基于划分的KMeans 算法原理 (Partition-based methods)
目标:类内的点足够近,类间的点足够远
算法流程:
1.选择聚类的个数K
2.随机选定聚类中心
3.根据点到聚类中心距离(欧式距离)确定各个点所属类别
4.根据各个类别的数据更新聚类中心
5.重复以上步骤直到收敛(中心点不再变化)
优点:
1.算法快速、简单
2.对大数据集有较高的效率并且是可伸缩性的
3.时间复杂度近于线性,而且适合挖掘大规模数据集。K-Means聚类算法的时间复杂度是O(n×k×t)
,其中n代表数据集中对象的数量,t代表着算法迭代的次数,k代表着簇的数目
4.对噪声、离群值敏感,只用于numerical类型数据,不适用于categorical类型数据。
缺点:
1.在k-measn算法中K是事先给定的,但是K值的选定是非常难以估计的。
2.随机选择初始聚类中心,结果可能缺乏一致性
3.当数据量很大时,算法的开销是非常大的。
4.不能解决非凸数据
K-means++
引入k-means++算法,基本思想就是:初始的聚类中心之间的相互距离要尽可能的远。而且在计算过程中,通常采取的措施是进行不止一次的聚类,每次都初始化不同的中心,以inertial最小的聚类结果作为最终聚类结果。
kernel k-means
可以解决凸数据

本文介绍了KMeans聚类算法的基本原理、优缺点,包括算法流程、K-means++改进以及kernel k-means。还详细讨论了sklearn.cluster.KMeans的参数设置,并提出了K值评估标准如Calinski-Harabaz Index和Silhouette Coefficient。最后,展示了如何使用sklearn库实现KMeans分类算法。
最低0.47元/天 解锁文章
517

被折叠的 条评论
为什么被折叠?



