机器学习 - 聚类 K均值聚类 KMeans Analysis(学习笔记)

本文介绍了KMeans聚类算法的基本原理、优缺点,包括算法流程、K-means++改进以及kernel k-means。还详细讨论了sklearn.cluster.KMeans的参数设置,并提出了K值评估标准如Calinski-Harabaz Index和Silhouette Coefficient。最后,展示了如何使用sklearn库实现KMeans分类算法。
摘要由CSDN通过智能技术生成

基于划分的KMeans 算法原理 (Partition-based methods)

目标:类内的点足够近,类间的点足够远 

算法流程:

1.选择聚类的个数K

2.随机选定聚类中心

3.根据点到聚类中心距离(欧式距离)确定各个点所属类别

4.根据各个类别的数据更新聚类中心

5.重复以上步骤直到收敛(中心点不再变化)

优点:

1.算法快速、简单

2.对大数据集有较高的效率并且是可伸缩性的

3.时间复杂度近于线性,而且适合挖掘大规模数据集。K-Means聚类算法的时间复杂度是O(n×k×t)

,其中n代表数据集中对象的数量,t代表着算法迭代的次数,k代表着簇的数目

4.对噪声、离群值敏感,只用于numerical类型数据,不适用于categorical类型数据。

缺点:

1.在k-measn算法中K是事先给定的,但是K值的选定是非常难以估计的。

2.随机选择初始聚类中心,结果可能缺乏一致性

3.当数据量很大时,算法的开销是非常大的。

4.不能解决非凸数据

K-means++

引入k-means++算法,基本思想就是:初始的聚类中心之间的相互距离要尽可能的远。而且在计算过程中,通常采取的措施是进行不止一次的聚类,每次都初始化不同的中心,以inertial最小的聚类结果作为最终聚类结果。

kernel k-means

可以解决凸数据

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值