目录
摘要
随着国民经济水平保持着迅速地持续发展,这使得我国交通道路建设迅速扩展,车辆使用量呈爆炸式增长。2024 年 1 月 11 日,我国公安部公布2023 年全国机动车和驾驶人数据。2023 年,全国机动车量达 4.4 亿辆,机动车驾驶人达 5 亿人。
车辆使用量呈爆炸式增长,巨大的交通流量必然会带来交通秩序与交通安全等各种交通隐患,并大大提高交通监管的负担,为了解决该问题,需要引入可靠的交通车辆跟踪测速技术。
传统测速方法,原理上都是通过获取波在物体表面反射运动的时间差的方式测得 物体运动速度,如利用电磁波,声波等。虽然技术成熟,但存在安装成本高、维护困难等问题。而且,这些传统方法通常需要在道路上铺设设备,可能会破坏道路结构,影响道路美观。本研究提出并实现了一种基于 YOLOv5(You Only Look Once version 5)和 DeepSort(Simple Online and Realtime Tracking with a Deep Association Metric)算法的车辆测速系统,该系统通过先进的机器视觉技术,对道路车辆进行实时检测、跟踪和测速,能够准确、实时地检测、跟踪和测速道路上的车辆,具有较高的鲁棒性和可扩展性,不仅可以为智能交通系统提供有力的技术支持,还可以为城市交通管理和规划提供有效的决策支持,并提高了道路交通的安全性和有序性。为智能交通系统提供了强有力的技术支撑,极大地降低安装和维护成本并增强智能交通管理能力。
在车辆检测方面,我们采用了 YOLOv5 算法。YOLOv5 作为一种先进的实时目标检测算法,能够在保持高准确率的同时实现快速检测。通过优化网络并进行数据集的采集,打标和训练,我们进一步提高了 YOLOv5 在交通场景中的检测性能,尤其是针对交通车辆等特定目标的检测。
在车辆跟踪方面,我们引入了 DeepSort 算法。DeepSort 算法结合了深度学习特征表示和卡尔曼滤波器等传统跟踪算法的优点,能够在复杂场景中实现鲁棒性强的多目标跟踪。通过结合 YOLOv5 检测到的车辆目标信息,DeepSort 能够实现对车辆目标的连续跟踪,为后续的测速工作提供了可靠的数据支持。
在车辆测速方面,我们利用车辆跟踪结果,根据摄像机标定的原理,结合摄像头参数和时间戳信息,实现像素坐标与世界坐标的转换,利用位移时间关系计算出车辆的实时速度。
实验结果表明,基于 YOLOv5 和 DeepSort 的车辆测速系统能够准确、实时地检测、跟踪和测速道路上的车辆,具有较高的鲁棒性和可扩展性。该系统不仅可以为智能交通系统提供有力的技术支持,还可以为城市交通管理和规划提供有效的决策支持,并提高了道路交通的安全性和有序性。
第1章 绪论
1.1 课题背景及研究的目的和意义
在改革开放以后,我国国民经济水平保持着迅速地持续发展,这使得我国交通道路建设迅速扩展,车辆使用量呈爆炸式增长。2024 年 1 月 11 日,我国公安部公布2023 年全国机动车和驾驶人数据。2023 年,全国机动车量达 4.35 亿辆,机动车驾驶人达 5.23 亿人。随着系能源汽车技术在全国的推广,比亚迪、理想、蔚来等车企相继研发制造新能源汽车,全国新能源汽车量达 2041 万辆,其中纯电动车量 1552 辆,占比 76.04%。特别地,2024 年春运期间,公路交通流动量 78.3 亿人次,在全社会跨区域人员流动量中占比 80%左右,春运中超过 90%的流动量都是来自汽车,自驾出行占比大大提升。如此巨大的交通流量必然会带来交通秩序与交通安全等各种交通隐患,并大大提高交通监管的负担,为了解决该问题,需要引入可靠的交通车辆跟踪测速技术。
传统测速方法,原理上都是通过获取波在物体表面反射运动的时间差的方式测得物体运动速度,如利用电磁波,声波等。虽然技术成熟,但存在安装成本高、维护困难等问题。而且,这些传统方法通常需要在道路上铺设设备,可能会破坏道路结构,影响道路美观。目前,深度学习技术兴起,在智能交通系统领域有着巨大的发挥潜力,基于 YOLOv5 和 DeepSort 的车辆测速系统能够准确、快速地检测出车辆,并对其进行跟踪和测速,极大地降低安装和维护成本并增强智能交通管理能力。因此,本文基于 YOLOv5 和 DeepSort 算法,设计机器视觉车辆测速系统,对视频中的车辆进行目标检测、目标跟踪、车辆测速,对城市智能交通监管以及交通安全性、有序性的保障有着重要意义。
1.2 国内外研究现状
1.2.1 测速领域
传统的测速方式,传统车速检测方法主要为地感线圈检测法、雷达检测法、激光检测法等等[1],技术较为成熟,准确度高,但设备价格昂贵,安装维护不便,且多为固定位置。通常需要在道路上铺设设备,可能会破坏道路结构,影响道路美观。
地感线圈检测法利用电磁感应原理,电感线圈能生成交变的磁场,当金属经过该交变磁场时,电感线圈中磁通量会有所变化,随之有涡流产生,电感量也会变化[2]。因此,车体的金属部分经过铺设好的前后地感线圈,获取前后线圈的时间差,结合固有的前后线圈的距离就能测出距离,在交通管理超速管理中应用更为广泛。由主机和触发器组成的地感线圈检测设备在如今应用较广,适用于 2 个及以上地感线圈的车辆超速测定。
雷达检测法则利用多普勒雷达原理进行测量[3]。雷达系统发射无线电信号,利用发射原理,信号到达车辆后由车辆发射至雷达系统,雷达系统接收信号。此过程无线电信号频率会发生改变,利用频率的差异获得车辆的车速。雷达检测法可以采用单点测速、双点测速和多点测速,但容易收到天气条件以及其他雷达信号的干扰。
随着机器视觉技术的快速发展,图像识别、目标跟踪等算法的性能得到了显著提升,YOLOv5 和 DeepSort 算法的不断改进与优化,基于机器视觉的车辆测速开始兴起,广泛运用于智能交通系统中。一些研究通过引入新的特征匹配方法和深度学习方法,提高了模型对不同场景下车辆的识别能力。同时,还有一些研究将基于 YOLOv5和 Deepsort 的车辆测速算法应用于自动驾驶系统中,为自动驾驶系统提供了重要的感知能力。国外还通过引入注意力机制和 SENet 等网络结构,提高了模型对车辆深度特征的提取能力,进而提高了测速精度。这种方式脱离了路况的局限性,通过对视频进行图像分析处理来测量车辆的速度,是一种更先进的测速方式。
1.2.2 目标检测领域
传统目标检测法如帧差法、光流法、背景差分法[4]等计算量较大且具有一定延时性,外界背景对其有极大干扰能力。基于卷积神经网络(CNN)的目标检测方法如 Faster R-CNN、YOLO、SSD 等凭借极强的图形特征学习能力,能以更快地检测速度和更准确的检测精度实现对目标的检测[4]。
在目标检测领域的发展历程中,早期的技术主要依赖于事先定义的特征来识别图像中的目标,例如 VJ 检测器和 HOG 检测器。然而,这一领域在 2014 年迎来了突破性的进展,当时基于区域的卷积神经网络(Region-based Convolutional Neural Networks, R-CNN)被引入,显著提升了目标检测的准确率,相比传统方法提高了至少 30%。R-CNN 的成功在于其利用卷积神网络进行特征提取,从而能够自动学习并适应复杂多变的图像数据。
R-CNN 的出现不仅为深度学习在目标检测领域的应用奠定了基础,还为后续更高效的检测算法的发展指明了方向。Fast R-CNN 和 Faster R-CNN 等算法在 R-CNN的基础上进行了优化,进一步提高了检测速度和准确率,使得深度学习在目标检测中的应用更加广泛和深入。
与此同时,另一种目标检测算法——YOLO(You Only Look Once)也在不断发展壮大。YOLOv1 在 2016 年由 Redmon 等人提出,它通过单次前向传播即可完成目标检测,实现了较高的处理速度和较好的检测精度[5]。随后,YOLO 系列算法不断迭代更新,如 YOLOv2、YOLOv3、YOLOv5 等,通过引入先验框分类和边界框调整等机制,进一步提高了检测性能。最新的 YOLOv8 版本更是在精度和速度之间实现了最佳平衡,成为目标跟踪系统中集成目标检测算法的优选方案。
总之,从 R-CNN 到 YOLO 系列算法的发展,不仅推动了目标检测技术的不断进步,也为目标跟踪等相关领域的研究提供了有力的支持。这些算法的成功应用不仅提高了目标检测的准确率和速度,还为深度学习在更多领域的应用提供了有益的启示。
1.2.3 目标跟踪领域
传统的目标跟踪方法,如扩展卡尔曼滤波、无迹卡尔曼滤波和粒子滤波等,虽然在过去发挥了重要作用,但在面对复杂多变的交通场景时,其局限性逐渐显现,极其容易受到天气、光线以及遮挡等问题的影响。近年来,深度学习以其卓越的特征提取能力和强大的模型学习能力,在图像处理领域取得了显著的突破。因此,在交通监测领域,特别是在车辆多目标跟踪方面,基于深度学习的技术逐渐成为研究和实践的热点。
马尔科夫链蒙特卡洛(Markov Chain Monte Carlo, MCMC)算法是一种统计模拟方法[6],常用于从复杂的概率分布中采样。虽然 MCMC 在某些问题中可以被应用于多目标跟踪的建模,但它本身并不是一种直接的多目标跟踪算法。然而,Yu 等人基于 MCMC 的原理,提出了数据驱动的马尔科夫链蒙特卡洛算法(Data Driven MCMC,DDMCMC),尝试通过数据驱动的方式改善 MCMC 的性能,可能用于某些与多目标跟踪相关的统计建模问题。到了 2016 年,Bewley 等人提出了 Simple Online and Realtime Tracking (SORT) 算法[7],这是一个为实时多目标跟踪设计的简单且高效的框架。SORT 算法使用卡尔曼滤波器来预测目标在下一帧中的位置,并通过匈牙利算法(也称为 KM 算法或Munkres 算法)来实现预测位置和实际检测位置的关联匹配。这种方法能够在高帧率和高分辨率的视频中提供优异的跟踪性能,因为它避免了复杂的特征提取和匹配过程。
然而,SORT 算法的一个主要缺点是它忽略了目标物体的外观特征(如大小、形状等),这导致在目标不确定性较高(如遮挡