AGI大模型学习路线,这是我见过关于大模型学习路线讲的最好的文章,没有之一!

大模型学习路线

建议先从主流的Llama开始,然后选用中文的Qwen/Baichuan/ChatGLM,先快速上手体验prompt工程,然后再学习其架构,跑微调脚本

如果要深入学习,建议再按以下步骤,从更基础的GPT和BERT学起,因为底层是相通的,而且实际落地到一个系统中,应该也是大模型结合小模型(大模型在做判别性的任务上,比BERT优势不是特别大)

可以参考如下方案,按需学习。

一、简述

按个人偏好总结了学习目标与路径,后续将陆续整理相应学习资料,并输出学习笔记。

学习思路: 快速应用Transformer等轮子来微调和使用LLM,同时深入学习NLP预训练模型原理和推理部署(因为偏底层的东西变化不大)

学习目标
  • 熟悉主流LLM(Llama, ChatGLM, Qwen)的技术架构和技术细节;有实际应用RAG、PEFT和SFT的项目经验
  • 较强的NLP基础,熟悉BERT、GPT、Transformer、T5等预训练语言模型的实现,有对话系统相关研发经验
  • 掌握TensorRT-LLM、vLLM等主流推理加速框架,熟悉模型量化、FlashAttention等推理加速技术方案,对分布式训练DeepSpeed框架有实战经验
  • 熟悉Pytorch,具备扎实的深度学习和机器学习基础,基本掌握C/C++、Cuda和计算机系统原理
参考项目

torchkeras

参考书籍

Alt text

参考课程
教程
学习方式
  • 力求快速应用 (先调包,再深入学习)
  • 在实践中动手学习,力求搞懂每个关键点
  • 【原理学习】+【代码实践】 + 【输出总结】
基础知识
学习纲要

应用

1、Zero Shot / Few Shot 快速开箱即用

  • Prompt调优:
    • 上下文学习In-Context Learning, ICL
    • 思维链 Chain of Thought, COT
  • RAG (Retrieval Augmented Generation)
    • 基于文档分块、向量索引和LLM生成,如Langchain文档问答

2、领域数据-指令微调LLM

  • PEFT (Parameter-Efficient Fine-Tuning):
    • LORA (Low-Rank Adaption of LLMs)
    • QLORA
    • SLORA
    • P-Tuning v2

参数高效的微调,适合用于纠正模型输出格式(PEFT上限不高,并向LLM输入的知识有限)

  • SFT (Supervised Fintuning):
    • 全参数监督微调,使用prompt指令样本全量微调LLM(可以注入新的领域知识)
    • 需要控制样本配比(领域数据 + 通用数据)

3、对齐

  • 对齐人类偏好 (RLHF):
    • RewardModel 奖励模型 (排序标注,判断答案价值)
    • RL (PPO, 更新SFT模型)

专注基于强化学习的大语言模型对齐,有前景的方向是SuperhumanAI AutoALign

4、预训练

  • 小模型预训练 (GPT2, TinyLlama)不考虑训练参数规模较大的语言模型

5、训练推理优化

  • 模型量化
  • 推理加速
  • 蒸馏
  • 推理框架(vLLM、TensorRT-LLM、Llama.cpp)

在这里插入图片描述

二、学习目录

第1章 技术与需求分析

1.1 技术分析

  • LLM的发展历程与趋势
  • 开源LLM生态

1.2 市场需求分析

  • 需求和就业市场分析
    • 预训练、对齐
    • 微调、应用
    • 推理加速
  • 商业落地分析(2C、2B应用场景)
第2章 ChatGPT背景与原理

2.1 ChatGPT的工作原理

  • 预训练与提示学习阶段
  • 结果评价与奖励建模阶段
  • 强化学习阶段

2.2 算法细节

  • 标注数据
  • 建模思路
第3章 预训练语言模型

3.1 Transformer

3.2 GPT

3.3 BERT

3.4 T5系列

  • T5-Pegasus对话摘要微调
  • PromptClue关键词抽取微调

3.5 UniLM

  • UniLM模型介绍
  • 基于夸夸闲聊数据的UniLM模型实战
第4章 提示学习与大型语言模型

4.1 提示学习PromptLearning

  • 提示学习介绍
  • 提示模板设计
  • 答案空间映射设计

4.2 上下文学习 ContextLearning

  • 上下文学习介绍
  • 预训练阶段提升上下文
  • 推理阶段优化上下文

4.3 指令数据构建

第5章 开源大型语言模型

5.1 Mistral

  • Mistral 7B Tutorial: datacamp.com/tutorial/m
  • Mistral-8X7B-MOE的模型结构
  • Mistral -8X7B-MOE源码解析
  • Mistral-7B微调

5.2 Llama

5.3 ChatGLM

第6章 LLM微调

6.1 全量指令微调SFT

6.2 高效微调PEFT

LORA系列

其他

  • P-Tuning V2介绍
  • P-Tuning v2微调实战

实战

  • HuggingFace PEFT库详解
  • Deepspeed-Chat SFT 实践
第7章 大型语言模型预训练

7.1 预训练模型中的分词器

7.2 分布式训练

  • 分布式训练概述
  • 分布式训练并行策略
  • 分布式训练的集群架构
  • 分布式深度学习框架
    • Megatron-LM详解
    • DeepSpeed详解
  • 实践
    • 基于DeepSpeed的GLM预训练实战
    • 基于DeepSpeed的LLaMA 分布式训练实践

7.3 MOE混合专家模型

  • 基础概念
  • Mixstral-8X7B-MOE-介绍
  • 相关论文
第8章 LLM应用

8.1 推理规划

  • 思维链提示(Chain-of-Thought Prompting)
    • 论文
    • 实战
  • 由少至多提示(Least-to-Most Prompting)

8.2 综合应用框架

8.3 智能代理AI Agent

第9章 LLM加速

9.1 注意力优化

9.2 CPU推理加速

  • Llama.c应用与代码详解
  • Llama.cpp应用与代码详解
  • ChatGLM.cpp应用与代码详解

9.3 推理优化框架

  • vLLM推理框架实践
  • TensorRT-LLM应用与代码详解

9.4 训练加速

第10章 强化学习

10.1 强化学习概述

10.2 强化学习环境

10.3 强化学习算法

  • Q-learning算法
  • DQN算法
  • Policy Gradient算法
  • Actor-Critic算法
第11章 PPO算法与RLHF理论实战

11.1 近端策略优化算法PPO

  • PPO:Proximal Policy Optimization Algorithms 论文
  • PPO介绍
    • 广义优势估计
    • PPO算法原理剖析
    • PPO算法对比与评价
    • 使用PPO算法进行RLHF的N步实现细节: cnblogs.com/huggingface
  • PPO实战

11.2 基于人类反馈的强化学习RLHF

  • InstructGPT模型分析
    • InstructGPT:Training language models to follow instructions with human feedback
  • 论文RLHF:Augmenting Reinforcement Learning with Human Feedback
  • RLHF的流程
    • RLHF内部剖析
    • RLHF价值分析
    • RLHF问题分析
    • 数据收集与模型训练
  • RLHF实践
  • MOSS-RLHF 实践
    • 奖励模型训练
    • PPO 微调
第12章 类ChatGPT实战

12.1 任务设计

12.2 数据准备

第13章 语言模型训练数据

13.1 数据来源

  • 通用数据
  • 专业数据

13.2 数据处理

  • 低质过滤
  • 冗余去除
  • 隐私消除

13.3 数据影响分析

  • 数据规模影响
  • 数据质量影响
  • 数据多样性影响

13.4 开源数据集合

  • Pile
  • ROOTS
  • RefinedWeb
  • SlimPajama
第14章 大语言模型评估

14.1 模型评估概述

14.2 大语言模型评估体系

  • 知识与能力
  • 伦理与安全
  • 垂直领域评估

14.3 大语言模型评估方法

  • 评估指标
  • 评估方法

14.4 大语言模型评估实践

  • 基础模型评估
  • SFT/RL 模型评估

第15章 多模态大模型

  • 多模态大模型调研
  • 实战
第16章 大模型原生应用

16.1 落地调研

  • 应用分析
    • 提供大模型基础服务:ChatGPT、Gemini、文心一言和GLM4等,主要面向ToC/ToB提供chat能力(内容创作、代码开发等),通过会员收费或按Token计费
    • ToB提供成套解决方案
    • 集成现有接口二次开发,应用开发
    • 开源模型增量预训练、全量微调、高效微调,行业内落地

模型最终还需落地解决实际问题,创造价值:优化现有问题、满足、甚至创造用户需求。

总的来说,就是规模化、自动化人的工作,替代人工,批量化、大规模生成或提供服务。

16.2 应用分析

一些思考

在企业里面做7B、13B量级的微调,主要就是在搞数据、样本,技术壁垒不高。预训练壁垒高,因为需要烧钱堆经验。

在这个日新月异的时代,如何紧跟行业主流发展,并具备不可替代性是个难题:

  • 稀缺(不可替代性)
  • 稳定(业务和表层技术天天变,但底层的理论变化不大)
  • 需求持续(最好是类似衣食住行的刚需,否则技术 过时/热度褪去/不达预期,泡沫崩溃)
  • 不能越老越吃香(放到绝大多数行业都适用:不能经验积累,持续长期创造价值)
  • 壁垒(技术、业务、资本上有垄断)

尽量往底层和工程化上靠,学习相对不变的技术(理论上变化很难),迁移到稳定或有前景的行业,不断提升自己的学习效率:

  • 计算机系统知识(训练、推理、开发,模型推理部署工程化)
  • 数学(深入学习并实践)

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### AGI大模型学习资源汇总 #### 一、基础概念与理论 对于希望深入了解AGI(通用人工智能)及其背后的大模型技术的人来说,可以从基本的概念和历史出发。这部分内容涵盖了从人工智能的基础到现代大型语言模型的发展历程[^3]。 - **L1.1 人工智能概述与大模型起源探寻** - 探讨了AI的历史背景以及它如何演变为当前强大的预测工具。 - **L1.2 大模型与通用人工智能的紧密关联** - 解释为什么大规模参数量的语言模型被认为是通往真正意义上的人工智能的关键一步。 - **L1.3 GPT 模型的辉煌发展历程** - 特别关注GPT系列作为代表性作品之一,在自然语言处理领域取得的重大突破。 这些章节不仅提供了必要的理论支持,还为后续更深层次的技术探讨打下了坚实的基础。 #### 二、编程技能培养 为了能够实际操作并参与到这一前沿科技的研究当中,掌握一定的编程能力是非常重要的。特别是Python这门广泛应用于机器学习领域的高级脚本语言[^2]: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("gpt2") model = AutoModelForCausalLM.from_pretrained("gpt2") input_text = "Once upon a time" inputs = tokenizer(input_text, return_tensors="pt").to('cuda') outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 这段简单的代码展示了如何利用`transformers`库加载预训练好的GPT-2模型,并生成一段基于给定输入的文字描述。 #### 三、专项技术深入研究 当具备了一定的知识积累和技术储备之后,则可以进一步探索诸如Prompt Engineering(提示工程技术),Function Calling等功能特性;同时也应该熟悉像LangChain这样专门为连接不同组件而设计的工作流平台。 #### 四、实践项目指导 除了理论上的准备之外,动手做几个小型的应用程序也是非常有益处的。比如创建自己的聊天机器人或是尝试实现一个简易版的虚拟助手服务。这类实践活动有助于巩固所学到的知识点,并提高解决问题的实际能力[^4]。 #### 五、持续更新的学习材料 最后但同样重要的是保持对新知的好奇心和求知欲。随着该领域内新技术不断涌现,定期查阅最新的研究成果论文、观看高质量的教学视频、阅读专业的电子书都是不错的选择[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值