近年来,大语言模型(LLM)的能力飞速发展,今天我们来教大家如何本地部署 Qwen-2.5 模型,并构建一个简单的智能 Agent,为各种任务提供支持!
一、环境准备
在开始之前,确保你已经准备好以下条件:
-
- 硬件要求:推荐一块 16GB 显存的 GPU(如 NVIDIA RTX 系列)。
-
- Python 环境:建议使用
virtualenv
或conda
创建独立的虚拟环境。
- Python 环境:建议使用
-
- 必要的依赖:运行以下命令安装所需库:
pip install transformers accelerate langchain
二、加载 Qwen-2.5 模型
以下代码展示了如何加载 Qwen-2.5 模型并与其进行交互:
代码示例:
from transformers import AutoTokenizer, AutoModelForCausalLM # 加载 Qwen-2.5 的 tokenizer 和模型 model_name = "Qwen-2.5"# 替换为你的模型路径 tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).cuda() defquery_model(prompt): inputs = tokenizer(prompt, return_tensors="pt").to("cuda") outputs = model.generate(inputs.input_ids, max_length=512, do_sample=True) return tokenizer.decode(outputs[0], skip_special_tokens=True) # 测试模型 prompt = "你好!请介绍一下你自己。" response = query_model(prompt) print("模型回答:", response)
运行上面的代码,Qwen-2.5 模型会给出答案。你可以修改 prompt
来测试不同的问题。
三、构建一个简单的智能 Agent
智能 Agent 不仅能回答问题,还能记住对话历史并进行多轮交互。以下是实现代码:
代码示例:
class QwenAgent: def__init__(self, model, tokenizer): self.model = model self.tokenizer = tokenizer self.memory = [] # 用于存储对话历史 defrespond(self, user_input): context = "\n".join(self.memory) prompt = f"以下是对话历史:\n{context}\n用户:{user_input}\nAI:" inputs = self.tokenizer(prompt, return_tensors="pt").to("cuda") outputs = self.model.generate(inputs.input_ids, max_length=512, do_sample=True) response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) self.memory.append(f"用户:{user_input}") self.memory.append(f"AI:{response}") return response # 创建 Agent 实例 qwen_agent = QwenAgent(model, tokenizer) # 测试 Agent whileTrue: user_input = input("你:") if user_input.lower() in ["退出", "exit", "quit"]: break response = qwen_agent.respond(user_input) print("AI:", response)
通过这个智能 Agent,你可以和 Qwen-2.5 进行更自然的多轮对话。
四、将 Agent 服务化
为了更方便地调用智能 Agent,可以使用 FastAPI 将其部署为一个 Web 服务,供前端或其他程序调用。
FastAPI 示例代码:
from fastapi import FastAPI from pydantic import BaseModel app = FastAPI() classQuery(BaseModel): question: str @app.post("/chat") asyncdefchat(query: Query): response = qwen_agent.respond(query.question) return {"response": response} # 启动服务 # uvicorn app:app --host 0.0.0.0 --port 8000
运行上述代码后,通过浏览器或其他工具即可访问 http://localhost:8000/chat
,与 Agent 互动。
五、优化与扩展
为了让智能 Agent 更加强大,你还可以:
-
- 加入工具支持:结合搜索引擎、文档检索、计算工具等功能。
-
- 优化模型性能:使用
BitsAndBytes
等工具对模型进行量化,减少硬件资源占用。
- 优化模型性能:使用
-
- 应用场景扩展:如知识问答、代码生成、内容创作等。
六、总结
通过本教程,你已经学会了如何本地部署 Qwen-2.5 模型,并构建一个智能 Agent。如果你在实际操作中遇到问题,欢迎留言与我们互动!如果觉得本文有帮助,记得点赞、收藏并分享给更多人哦! 😊
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓