Meta最新开源大模型LLaMA 3.1,表现惊艳!

Meta最近发布了开源模型——LLaMA 3.1。这个模型有三个参数版本,分别是8B、70B和405B。其中,405B的性能号称可以直逼GPT-4。我们先来看看它到底有多强大。

下载与安装LLaMA 3.1

首先,我下载了8B模型到我的电脑。这个模型的大小是4.7G,虽然参数最小,但可以通过实际测试来看看它的表现。下载和安装其实非常简单。只需要到Ollama的官网上下载安装包,像正常安装一个软件一样,安装完成后,在PowerShell中输入`ollama run llama3.1:8b`即可运行。

如果你本地没有这个模型,它会自动下载,非常方便。

实际测试LLaMA 3.1:8B的能力

为了全面了解LLaMA 3.1:8B的能力,我准备了五个问题,分别涉及中文、英文、数字、推理和代码能力。让我们看看它的表现如何:

1. **问题:9.11和9.8谁大?**

  • **回答**:9.8通常是指地球表面上重力加速度的值,约为9.8米每二次方秒(m/s”)。而9.11则是一个比较小的数字,它也可以是指一些其他物理量的值,但通常不如9.8那么常见。

但如果你问的是9.11和9.8谁大,那么答案很简单,9.8当然比9.11大!

  • **分析**:模型正确理解了简单的数字比较。

2. **问题:Who is bigger, 9.11 or 9.8?**

  • **回答**:In this case the answer is simple:9.8 is bigger than 9.11!The number 9.8 is a well-known value representing the acceleration due to gravity on Earth’s surface,while 9.11 is just a smaller number.

  • **分析**:模型在英文语境下同样给出了正确的回答,显示了跨语言处理的能力。

3. **问题:"仁者爱人"是谁说的?**

  • **回答**:这是个哲学谚语。“仁者爱人"这句话通常被认为是孔子说的。他在《论语》中说过:"仁者,爱人;而亲仁,也可以称之为仁者爱人。

这句谚语强调了仁慈和宽容的道德原则,即对所有人类都应该表现出爱意和同情心。

  • **分析**:模型能够正确识别并回答中文古语的问题,表现出一定的文化背景知识。

4. **问题:How many letters ‘r’ are in the word ‘strawberry’?**

  • **回答**:The word “strawberry” has 3 letter 'r’s.

  • **分析**:模型在英文词汇的字母统计中表现优秀。

5. **问题:使用Python计算1到20的阶乘,给出代码。**

  • **回答**:

python

import math``#使用math库计算阶乘``for i in range(1,21):`    `print(f"{i}的阶乘是:{math.factorial(i)}")

这段代码会输出从1到20 的阶乘。

也可以使用递归的方法计算阶乘

python

def factorial(n):`    `if n == 0:return 1else:`        `return n*factorial(n-1) #计算1到20的阶乘``for i in range(1,21):`    `print(f"{i}的阶乘是:{factorial(i)}")

这段代码也会输出从1到20的阶乘

  • **分析**:模型给出了正确的Python代码,而且是两种解决方式,展示了其编程能力。

LLaMA 3.1:8B的表现

总体来看,LLaMA 3.1:8B在这五个测试问题中表现优秀,特别是在跨语言处理、简单推理和编程能力方面都能给出准确答案。这显示了即使是参数最小的版本也具有相当强大的处理能力。

对比GPT-3.5

对于大家关心的LLaMA 3.1是否超过GPT-3.5的问题,我们可以从几个角度来对比:

- **参数量**:LLaMA 3.1的8B版本参数量比GPT-3.5小得多,但在处理日常问题时并没有明显劣势。

- **响应速度**:由于参数量较小,8B版本的响应速度更快,适合需要高效处理的应用场景。

- **文化知识**:在回答中文古语问题时,LLaMA 3.1表现出色,这可能是因为Meta在训练过程中加入了更多的多语言和多文化数据。

对于那些不习惯使用命令行的朋友们,别担心!你也可以通过Docker下载一个Open WebUI。这个界面跟ChatGPT很像,使用起来非常直观。安装完成后,你可以在Docker中直接打开使用。

总结

通过以上测试可以看出,LLaMA 3.1:8B虽然是参数最小的版本,但已经展现出相当强大的能力。对于有高性能需求的用户,70B和405B版本将会提供更强的计算能力和更准确的回答。在未来,随着LLaMA系列模型的不断优化,我们可以期待它在更多领域中的应用和表现。

希望这篇文章能够帮助大家了解LLaMA 3.1的强大之处

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### LLaMA-3.1 部署指南 #### 准备环境 为了成功部署 LLaMA-3.1,在Linux环境中需先准备必要的依赖项和工具。确保已安装Python 3.x版本以及pip包管理器。 ```bash sudo apt-get update && sudo apt-get install python3-pip -y ``` 对于CUDA支持的GPU加速,还需配置相应的NVIDIA驱动程序与cuDNN库[^2]。 #### 安装PyTorch框架 通过官方推荐的方式获取最新版PyTorch,这一步骤至关重要因为LLaMA架构基于此深度学习平台构建而成。 ```bash pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118 ``` 注意上述命令适用于带有特定CUDA版本的支持;如果目标机器不具备合适的硬件条件,则应选用CPU-only版本替代方案[^1]。 #### 获取源码仓库 访问Meta公司维护于GitHub上的开源项目页面下载或克隆整个llama3代码库至本地文件夹内。 ```bash git clone https://github.com/meta-llama/llama3.git cd llama3 ``` #### 构建与测试模型 按照README文档指示完成后续编译过程,并执行简单的验证脚本来确认一切正常运作。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3-7b") model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3-7b") input_text = "Once upon a time" inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=50) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` 以上实例展示了如何加载预训练权重并生成一段连续文本作为初步检验手段[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值