Meta最近发布了开源模型——LLaMA 3.1。这个模型有三个参数版本,分别是8B、70B和405B。其中,405B的性能号称可以直逼GPT-4。我们先来看看它到底有多强大。
下载与安装LLaMA 3.1
首先,我下载了8B模型到我的电脑。这个模型的大小是4.7G,虽然参数最小,但可以通过实际测试来看看它的表现。下载和安装其实非常简单。只需要到Ollama的官网上下载安装包,像正常安装一个软件一样,安装完成后,在PowerShell中输入`ollama run llama3.1:8b`即可运行。
如果你本地没有这个模型,它会自动下载,非常方便。
实际测试LLaMA 3.1:8B的能力
为了全面了解LLaMA 3.1:8B的能力,我准备了五个问题,分别涉及中文、英文、数字、推理和代码能力。让我们看看它的表现如何:
1. **问题:9.11和9.8谁大?**
- **回答**:9.8通常是指地球表面上重力加速度的值,约为9.8米每二次方秒(m/s”)。而9.11则是一个比较小的数字,它也可以是指一些其他物理量的值,但通常不如9.8那么常见。
但如果你问的是9.11和9.8谁大,那么答案很简单,9.8当然比9.11大!
- **分析**:模型正确理解了简单的数字比较。
2. **问题:Who is bigger, 9.11 or 9.8?**
-
**回答**:In this case the answer is simple:9.8 is bigger than 9.11!The number 9.8 is a well-known value representing the acceleration due to gravity on Earth’s surface,while 9.11 is just a smaller number.
-
**分析**:模型在英文语境下同样给出了正确的回答,显示了跨语言处理的能力。
3. **问题:"仁者爱人"是谁说的?**
- **回答**:这是个哲学谚语。“仁者爱人"这句话通常被认为是孔子说的。他在《论语》中说过:"仁者,爱人;而亲仁,也可以称之为仁者爱人。
这句谚语强调了仁慈和宽容的道德原则,即对所有人类都应该表现出爱意和同情心。
- **分析**:模型能够正确识别并回答中文古语的问题,表现出一定的文化背景知识。
4. **问题:How many letters ‘r’ are in the word ‘strawberry’?**
-
**回答**:The word “strawberry” has 3 letter 'r’s.
-
**分析**:模型在英文词汇的字母统计中表现优秀。
5. **问题:使用Python计算1到20的阶乘,给出代码。**
- **回答**:
python
import math``#使用math库计算阶乘``for i in range(1,21):` `print(f"{i}的阶乘是:{math.factorial(i)}")
这段代码会输出从1到20 的阶乘。
也可以使用递归的方法计算阶乘
python
def factorial(n):` `if n == 0:return 1else:` `return n*factorial(n-1) #计算1到20的阶乘``for i in range(1,21):` `print(f"{i}的阶乘是:{factorial(i)}")
这段代码也会输出从1到20的阶乘
- **分析**:模型给出了正确的Python代码,而且是两种解决方式,展示了其编程能力。
LLaMA 3.1:8B的表现
总体来看,LLaMA 3.1:8B在这五个测试问题中表现优秀,特别是在跨语言处理、简单推理和编程能力方面都能给出准确答案。这显示了即使是参数最小的版本也具有相当强大的处理能力。
对比GPT-3.5
对于大家关心的LLaMA 3.1是否超过GPT-3.5的问题,我们可以从几个角度来对比:
- **参数量**:LLaMA 3.1的8B版本参数量比GPT-3.5小得多,但在处理日常问题时并没有明显劣势。
- **响应速度**:由于参数量较小,8B版本的响应速度更快,适合需要高效处理的应用场景。
- **文化知识**:在回答中文古语问题时,LLaMA 3.1表现出色,这可能是因为Meta在训练过程中加入了更多的多语言和多文化数据。
对于那些不习惯使用命令行的朋友们,别担心!你也可以通过Docker下载一个Open WebUI。这个界面跟ChatGPT很像,使用起来非常直观。安装完成后,你可以在Docker中直接打开使用。
总结
通过以上测试可以看出,LLaMA 3.1:8B虽然是参数最小的版本,但已经展现出相当强大的能力。对于有高性能需求的用户,70B和405B版本将会提供更强的计算能力和更准确的回答。在未来,随着LLaMA系列模型的不断优化,我们可以期待它在更多领域中的应用和表现。
希望这篇文章能够帮助大家了解LLaMA 3.1的强大之处
AI大模型学习路线
如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!
扫描下方csdn官方合作二维码获取哦!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
