大模型Agents开发框架如今已经百花齐放,层出不穷。本文将盘点8种主流LLM Agents开发框架,并介绍如何在每种框架中集成当下备受关注的MCP Server,让Agents系统更方便的接入外部工具。包括:
-
OpenAI Agents SDK
-
LangGraph
-
LlamaIndex
-
AutoGen 0.4+
-
Pydantic AI
-
SmolAgents
-
Camel
-
CrewAI
01
Open AI Agents SDK
【框架简介】
OpenAI Agents SDK是OpenAI官方推出的轻量级Agent开发框架,旨在方便开发者构建多Agent协作的智能体系统。该SDK源于OpenAI内部实验项目Swarm,并在近期正式推出生产版本。OpenAI Agents SDK的特点是:简单易用、轻量级、专注在最小集功能,并支持转交(Handoffs)、护栏(Guardrails)等很有特点的功能。
【集成MCP】
以下代码演示了如何将OpenAI Agent实例连接到一个搜索的MCP Server,并将其中的工具集成Agent中:
import asyncio, os
from agents import Agent, Runner, AsyncOpenAI, OpenAIChatCompletionsModel, RunConfig
from agents.mcp import MCPServerStdio
asyncdefmain():
# 1. 创建MCP Server实例
search_server = MCPServerStdio(
params={
"command": "npx",
"args": ["-y", "@mcptools/mcp-tavily"],
"env": {**os.environ}
}
)
await search_server.connect()
# 2. 创建Agent并集成MCP Server
agent = Agent(
name="助手Agent",
instructions="你是一个具有网页搜索能力的助手,必要时使用搜索工具获取信息。",
mcp_servers=[search_server], # 将MCP Server列表传入Agent
)
# 3. 运行Agent,让其自动决定何时调用搜索工具
result = await Runner.run(agent, "Llama4.0发布了吗?",run_config=RunConfig(tracing_disabled=True))
print(result.final_output)
await search_server.cleanup()
if __name__ == "__main__":
asyncio.run(main())
有趣的是,在使用远程MCP Server时,Agents SDK提供了自动缓存工具列表的选项(通过设置cache_tools_list=True
)。如果需要手动使缓存失效,可以调用MCP Server实例上的invalidate_tools_cache()
方法 。
02
LangGraph
【框架简介】
LangGraph来自著名的LangChain,是一个用于构建Agentic Workflow的强大框架,它将任务过程建模为有状态的Graph结构,从而可以实现更复杂和结构化的交互。在该框架内集成MCP Server可以在工作流程的各个阶段更精确地控制何时以及如何调用外部工具,从而实现复杂的Agentic系统。
LangGraph的特点是功能强大,你可以使用Prebuilt的接口快速创建Agent,也可以使用Graph定义复杂的Agentic工作流与多Agent系统;缺点是略显复杂。
【集成MCP】
将前面的示例修改为LangGraph+MCP Server的代码实现:
import asyncio, os
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_openai import ChatOpenAI
from dotenv import load_dotenv
from langgraph.prebuilt import create_react_agent
# 加载环境变量
load_dotenv()
# 定义大语言模型
model = ChatOpenAI(model="gpt-4o-mini")
# 定义并运行agent
asyncdefrun_agent():
# 定义MCP服务器,用于访问Tavily搜索工具
asyncwith MultiServerMCPClient(
{
"tavily": {
"command": "npx",
"args": ["-y", "@mcptools/mcp-tavily"],
"env": {**os.environ} # 传递环境变量给MCP工具
}
}
) as client:
# 创建ReAct风格的agent
agent = create_react_agent(model, client.get_tools())
# 定义系统消息,指导如何使用工具
system_message = SystemMessage(content=(
"你是一个具有网页搜索能力的助手,必要时使用搜索工具获取信息。"
))
# 处理查询
agent_response = await agent.ainvoke({"messages": [system_message, HumanMessage(content="Llama4.0发布了吗?")]})
# 返回agent的回答
return agent_response["messages"][-1].content
# 运行agent
if __name__ == "__main__":
response = asyncio.run(run_agent())
print("\n最终回答:", response)
注意这里使用MultiServerMCPClient可以灵活的支持多个MCP Server的同时连接,对于单个Server场景,你也可以借助load_mcp_tools方法直接从MCP SDK的session中导入Tools(无需MultiServerMCPClient)。
03
LlamaIndex
【框架简介】
LlamaIndex最初是一个专注于构建基于外部数据的LLM应用程序的框架,其独特之处在于构建以数据为中心的LLM应用的能力,特别是复杂的企业级RAG应用。但随着LlamaIndex Workflows与AgentWorkflow功能的推出,LlamaIndex也发展为一个更全能的专注于企业级RAG+Agent系统的开发框架。特点是功能强大、预置大量RAG应用优化模块;事件驱动的Workflows在Agent开发上比LangGraph更简单。
【集成MCP】
LlamaIndex目前也支持与MCP Server集成,快速导入Tools使用:
from llama_index.tools.mcp import McpToolSpec,BasicMCPClient
import asyncio
from llama_index.llms.openai import OpenAI
from llama_index.core.agent import ReActAgent
import os
llm = OpenAI(model="gpt-4o-mini")
asyncdefmain():
mcp_client = BasicMCPClient("npx", ["-y", "@mcptools/mcp-tavily"], env={**os.environ})
mcp_tool = McpToolSpec(client=mcp_client)
tools = await mcp_tool.to_tool_list_async()
agent = ReActAgent.from_tools(
tools,
llm=llm,
verbose=True,
system_prompt="你是一个具有网页搜索能力的助手,必要时使用搜索工具获取信息。"
)
response = await agent.aquery("Llama4.0发布了吗?")
print(response)
if __name__ == "__main__":
asyncio.run(main())
如果你的MCP Server是远程SSE模式运行,只需要更换BasicMCPClient初始化时的参数,将命令及参数(如npx)更换为url即可。
04
AutoGen 0.4+
【框架简介】
AutoGen是微软开发的一个框架,用于构建具有多Agent对话的下一代企业级AI应用。其独特之处在于专注于通过多个Agent之间的协调交互来实现协作和解决复杂任务,在最新的AutoGen0.4中,微软进行了颠覆性的架构修改,特别是开放了AutoGen-Core这一更底层的API层,可用于构建更底层与细粒度控制的分布式多Agent系统。其特点是功能强大,支持分布式多Agent,可根据需要选择不同层次的API使用;缺点是较复杂。
【集成MCP】
在Autogen 0.4的扩展中提供了MCP集成的组件,演示如下(代码有省略):
from autogen_ext.tools.mcp import StdioServerParams, mcp_server_tools
...
async def get_mcp_tools():
server_params = StdioServerParams(
command="npx",
args = [
"-y",
"@mcptools/mcp-tavily",
],env={**os.environ}
)
tools = await mcp_server_tools(server_params)
return tools
...
classToolUseAgent(RoutedAgent):
...
async defmain():
"""主函数,设置并运行agent系统"""
# 创建单线程agent运行时
runtime = SingleThreadedAgentRuntime()
mcp_tools = await get_mcp_tools()
tools = [*mcp_tools]
# 注册agent类型
await ToolUseAgent.register(runtime, "my_agent", lambda: ToolUseAgent(tools))
...
message = Message('Llama4.0发布了吗?)
response = await runtime.send_message(message, AgentId("my_agent", "default"))
如果需连接远程MCP Server,请使用SseServerParams组件,并使用url参数初始化。
05
Pydantic AI
【框架简介】
Pydantic AI来自于著名的Pydantic库开发者,是一个将Pydantic与LLM集成的Agents开发框架。其独特之处在于专注于在AI应用中利用Pydantic的类型验证、序列化与结构化输出等功能。Pydantic AI的特点是天然的结构化输出与强类型验证,且简洁易用,与其他框架也有良好的集成,可以结合使用。
【集成MCP】
使用Pydantic AI集成MCP Server中的工具非常简单(与OpenAI Agents SDK非常类似),只需要简单的提供Server配置即可:
from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStdio
import os
server = MCPServerStdio(
'npx',
["-y", "@mcptools/mcp-tavily"],
env={**os.environ}
)
agent = Agent(
name="助手Agent",
system_prompt="你是一个具有网页搜索能力的助手,必要时使用搜索工具获取信息。",
model='openai:gpt-4o-mini',
mcp_servers=[server])
async def main():
asyncwith agent.run_mcp_servers():
result = await agent.run('"Llama4.0发布了吗?')
print(result.data)
if __name__ == "__main__":
import asyncio
asyncio.run(main())
如果需要使用SSE远程MCP,将Server组件更改为MCPServerHTTP即可。
06
SmolAgents
【框架简介】
Smloagents是大名鼎鼎的Hugging Face开发的一个轻量级Agent开发框架。其特点在于简洁易用、基于生成代码的工具调用(核心抽象叫CodeAgent)以及与Hugging Face生态系统的集成。Smloagents与MCP的集成提供了一种直接的方式,可以为Agent添加复杂的功能,而无需为每个工具进行自定义编码。
【MCP集成】
以下代码演示了如何初始化一个Smloagent并将其连接到MCP Server:
from smolagents import ToolCollection, CodeAgent
from smolagents.agents import ToolCallingAgent
from smolagents import tool, LiteLLMModel
from mcp import StdioServerParameters
import os
model = LiteLLMModel(model_id="gpt-4o-mini")
server_parameters = StdioServerParameters(
command="npx",
args=["-y", "@mcptools/mcp-tavily"],
env={**os.environ},
)
with ToolCollection.from_mcp(server_parameters, trust_remote_code=True) as tool_collection:
agent = ToolCallingAgent(tools=[*tool_collection.tools], model=model)
response = agent.run("llama4.0发布了吗?")
print(response)
如果你需要使用SSE模式的MCP Server,只需要替换服务器配置参数为url即可。
07
Camel
【框架简介】
Camel是一个专注于创建能够进行复杂对话以解决任务的强大的多智能体构建框架 。其独特之处在于使用AI Agent之间的角色扮演和交互协作来完成任务,并内置了多种角色的Agent抽象及大量组件,Camel也可以用来开发RAG应用。现在这些Agent也可以通过MCP Server得到增强。
Camel还提供了一个将Camel中创建的工具集发布成MCP Server的功能。
【MCP集成】
你可以参考如下方式将基于Camel的Agent与MCP Server做集成:
import asyncio
from mcp.types import CallToolResult
from camel.toolkits.mcp_toolkit import MCPToolkit, MCPClient
import os
from camel.agents import ChatAgent
async def run_example():
mcp_client = MCPClient(
command_or_url="npx",
args=["-y", "@mcptools/mcp-tavily"],
env={**os.environ}
)
await mcp_client.connect()
mcp_toolkit = MCPToolkit(servers=[mcp_client])
tools = mcp_toolkit.get_tools()
try:
agent = ChatAgent(system_message='根据任务描述,使用网页搜索工具获取信息。',
tools=tools)
response = await agent.astep("llama4.0发布了吗?")
print("Response:", response.msgs[0].content)
except Exception as e:
print(f"Error during agent execution: {e}")
finally:
# 确保在任何情况下都会断开连接
await mcp_client.disconnect()
if __name__ == "__main__":
asyncio.run(run_example())
如果需要连接SSE的远程Server,替换这里的MCPClient中的输入参数为url即可。
08
CrewAI
【框架简介】
CrewAI是一个用于编排自主AI智能体像团队一样协作完成复杂任务的多智能系统开发框架。其独特之处在于其“角色扮演”的设计,专注于创建具有特定角色和职责的结构化Agent团队(称为Crew);最新的Flow功能可用于创建更可靠的Agentic Workflow。
【MCP集成】
目前官方的MCP集成正在紧锣密鼓的完善,还没有正式发布,暂时你可以借助一个第三方适配器进行:
import os
from crewai import Agent, Crew, Task # type: ignore
from mcp import StdioServerParameters
from mcpadapt.core import MCPAdapt
from mcpadapt.crewai_adapter import CrewAIAdapter
with MCPAdapt(
StdioServerParameters(
command="npx",
args=["-y", "@mcptools/mcp-tavily"],
env={**os.environ}
),
CrewAIAdapter(),
) as tools:
print(f"Tools: {tools}")
agent = Agent(
role="MyAgent",goal="根据任务描述,使用网页搜索工具获取信息。",backstory="你是一个中文搜索助手",
tools=tools,llm='gpt-4o-mini',
)
# Create a task
task = Task(
description="llama4.0的最新消息",agent=agent,expected_output="消息列表")
task.execute_sync()
官方的MCP适配器的进展可以参考其Github开源项目的PR #2496(MCP servers tool support in CrewAI #2496)。
以上为大家盘点了8个常见的AI Agent开发框架及其对MCP的支持。由于MCP诞生不久且处于不断完善中,这些框架对MCP的适配也在不断迭代,请及时参考你所使用的开发框架的最新参考文档,了解最新变化。
如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓