开源工具AnythingLLM全解析:打造智能私有知识库,RAG企业级解决方案实操指南

在数据安全和隐私保护日益受到重视的背景下,私有化部署大模型的需求日益增长。Mintplex Labs Inc. 推出的开源项目 AnythingLLM,为个人和企业提供了一种安全、高效且可定制的解决方案。该工具基于RAG(Retrieval-Augmented Generation)模型,允许用户将本地文档转换为可由大型语言模型(LLM)引用的格式,实现对话式问答和知识管理。

一、AnythingLLM的主要功能

  • 多用户支持与权限管理:支持多用户同时访问,并可设置不同权限。

  • 文档管理:支持PDF、TXT、DOCX等多种文档类型,并通过简易界面管理。

  • 聊天模式:提供对话和查询两种模式,保留历史记录,支持引用标注。

  • 技术栈简单:便于快速迭代和云部署。

  • 成本效益:对大型文档一次性嵌入,显著节约成本。

  • 开发者API:提供完整API支持自定义集成。

  • LLM:包括任何开源的 llama.cpp 兼容模型、OpenAI、Azure OpenAI、Anthropic ClaudeV2、LM Studio 和 LocalAi。

  • 嵌入模型:AnythingLLM 原生嵌入器、OpenAI、Azure OpenAI、LM Studio 和 LocalAi。

  • 向量数据库:LanceDB(默认)、Pinecone、Chroma、Weaviate 和 QDrant。

二、AnythingLLM 部署实战

1. 安装Chroma Vectorstore:通过Docker容器部署,创建集合并验证设置。

访问向量存储API文档: http://localhost:8000/docs

2. LocalAI部署:使用CLI应用程序启动API服务器,与开源模型交互。

git clone https://github.com/go-skynet/LocalAI``cd chroma``docker compose up -d --build

容器运行后,我们需要下载、安装模型以供测试使用

Bert 的转换器嵌入模型:MiniLM L6

curl http://localhost:8080/models/apply ``  -H "Content-Type: application/json"`  `-d '{ "id": "model-gallery@bert-embeddings" }'``   ``curl http://localhost:8080/v1/embeddings ``  -H "Content-Type: application/json"`  `-d '{ "input": "The food was delicious and the waiter...",``"model": "bert-embeddings" }'``   ``{``"created": 1702050873,``"object": "list",``"id": "b11eba4b-d65f-46e1-8b50-38d3251e3b52",``"model": "bert-embeddings",``"data": [`    `{``"embedding": [`        `-0.043848168,``0.067443006,`    `...``0.03223838,``0.013112408,``0.06982294,`        `-0.017132297,`        `-0.05828256`      `],``"index": 0,``"object": "embedding"`    `}`  `],``"usage": {``"prompt_tokens": 0,``"completion_tokens": 0,``"total_tokens": 0` `}``}

大模型LLM:Zephyr-7B-β

curl http://localhost:8080/models/apply ``   -H "Content-Type: application/json"  ``   -d '{ "id": "huggingface@thebloke__zephyr-7b-beta-gguf__zephyr-7b-beta.q4_k_s.gguf",  ``        "name": "zephyr-7b-beta" }'``   ``curl http://localhost:8080/v1/chat/completions ``   -H "Content-Type: application/json"  ``   -d '{ "model": "zephyr-7b-beta",  ``        "messages": [{`          `"role": "user",``           "content": "Why is the Earth round?"}],  ``        "temperature": 0.9 }'``   ``{`  `"created": 1702050808,`  `"object": "chat.completion",`  `"id": "67620f7e-0bc0-4402-9a21-878e4c4035ce",`  `"model": "thebloke__zephyr-7b-beta-gguf__zephyr-7b-beta.q4_k_s.gguf",`  `"choices": [`    `{`      `"index": 0,`      `"finish_reason": "stop",`      `"message": {`        `"role": "assistant",`        `"content": "\nThe Earth appears round because it is``actually a spherical body. This shape is a result of the` `gravitational forces acting upon it from all directions. The force` `of gravity pulls matter towards the center of the Earth, causing` `it to become more compact and round in shape. Additionally, the` `Earth's rotation causes it to bulge slightly at the equator,` `further contributing to its roundness. While the Earth may appear` `flat from a distance, up close it is clear that our planet is` `indeed round."`      `}`    `}`  `],`  `"usage": {`    `"prompt_tokens": 0,`    `"completion_tokens": 0,`    `"total_tokens": 0`  `}``}

3. 部署AnythingLLM:利用官方Docker镜像安装,然后配置LocalAI后端和嵌入模型。

docker pull mintplexlabs/anythingllm:master``   ``export STORAGE_LOCATION="/var/lib/anythingllm" && \``mkdir -p $STORAGE_LOCATION && \``touch "$STORAGE_LOCATION/.env" && \``docker run -d -p 3001:3001 \``-v ${STORAGE_LOCATION}:/app/server/storage \``-v ${STORAGE_LOCATION}/.env:/app/server/.env \``-e STORAGE_DIR="/app/server/storage" \``mintplexlabs/anythingllm:master

访问:http://localhost:3001,我们可以在其中使用直观的 GUI 开始配置。

LocalAI 后端配置:通过 http://172.17.0.1:8080/v1 URL 访问

嵌入模型配置与相同的 LocalAI 后端保持一致。

接下来,配置 Chroma 向量数据库,使用URL http://172.17.0.1:8000

创建一个工作区,命名为“Playground”。

在“Playground”工作区,我们可以上传文档,进一步扩展本地知识库。

至此我们能够与文档开始进行交互式对话。

总结:

AnythingLLM和Vector Admin是Mintplex Labs提供的创新开源工具,它们极大地简化了私有知识库的构建和管理。通过高效的RAG模型实现和直观的用户界面,这些工具不仅保障了数据的安全性,同时也提供了强大的交互式文档处理能力。随着技术的不断进步,这些工具将为企业和个人用户提供更多的可能性和价值。

AI大模型学习路线

如果你对AI大模型入门感兴趣,那么你需要的话可以点击这里大模型重磅福利:入门进阶全套104G学习资源包免费分享!

扫描下方csdn官方合作二维码获取哦!

在这里插入图片描述

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值