随着GPT的问世以来,国内的大大模型也开始呈现喷井式的爆发,而其中最具有代表性的莫过于“Kimi,智谱清言,通义千问,文心一言,豆包,天工AI,讯飞”这几家大模型遥遥领先。
那么,他们各自有什么优缺点呢?
在探讨国产AI大模型Kimi、智谱清言、通义千问、文心一言、豆包、天工AI和讯飞星火之前,我们需要理解这些模型背后的核心原理。
一:原理。
现有的大模型大多基于深度学习技术,尤其是神经网络,它们通过分析大量数据来学习语言和知识表示,从而能够执行各种复杂的任务,如文本生成、翻译、问答等。
但是,模型之前也有差别,而这个差别的最主要来源于每个模型都有其独特的架构和训练策略,而这样的差别,恰恰决定了它们在特定领域的表现。
二,各种大模型介绍
Kimi模型,以其在自然语言处理方面的卓越性能而著称,特别是在情感分析和文本分类任务上表现出色。
这得益于其深度学习架构中特殊的注意力机制,能够有效捕捉文本中的关键信息。
然而,Kimi在处理长文本时的性能略有下降,因为它更擅长处理短文本和片段信息。
短小精悍说的就是它了吧!
智谱清言则以其强大的语言生成能力而闻名,能够生成流畅、自然的文本,这在对话系统和内容创作方面非常有用。
智谱清言的优势在于其模型结构的创新,采用了多层次的编码器-解码器框架,能够更好地理解和生成复杂的语言结构。
不过,它在处理专业领域或需要深入领域知识的问题时,可能会显得力不从心。
但是,这也算大模型的通病吧。
啥都会,但样样不精。
通义千问是一个专注于问答系统的AI模型,它通过预训练和微调的方式,能够在广泛的主题上提供准确的答案。
通义千问的优势在于其强大的知识检索能力,能够快速从大量数据中找到相关信息。
但是,当涉及到推理和解释复杂概念时,通义千问的表现可能不如其他模型。
乐,果然,高数已经开始难倒的已经不止人了!
文心一言是一个多功能的AI模型,它在文本生成、摘要和翻译等多个任务上都表现出色。
文心一言的优势在于其模型的多任务学习能力,能够同时处理多种语言任务。
不过,它在处理特定领域的专业问题时,可能需要更多的领域特定数据来进行微调。
文心:我还是个学生!
豆包模型是一个面向特定领域的AI模型,它通过在特定领域的大量数据上进行预训练,能够为该领域提供专业的服务和支持。
豆包的优势在于其领域专精,能够提供深入且准确的领域知识。
然而,这也意味着它的通用性相对较弱,不适合处理跨领域的问题。
懂不懂专家的含金量啊!
天工AI是一个基于强化学习的AI模型,它通过自我学习和优化,能够在特定任务上达到超越人类的表现。
天工AI的优势在于其强大的自我优化能力,能够不断改进其性能。
但是,强化学习需要大量的训练数据和计算资源,这使得天工AI的训练成本较高。
嗯……这模型好烧。
我说的钱。
讯飞星火是一个以语音识别和语音合成为主要功能的AI模型,它在这两个领域都取得了显著的成果。
讯飞星火的优势在于其强大的语音处理能力,能够提供准确且自然的语音交互体验。
不过,它在文本生成和理解方面的能力相对较弱。
能听懂,但看不懂,说的可能就是这位了。
三,总结
如果将这些模型分为三个梯队,第一梯队可以是Kimi、智谱清言和通义千问,因为它们在各自的领域内表现出色,具有广泛的应用潜力。
第二梯队可以是文心一言和豆包,它们在特定领域或任务上表现出色,但在通用性方面稍逊一筹。
第三梯队则是天工AI和讯飞星火,它们在特定功能上表现出色,但在其他方面可能需要进一步的改进和优化。
只能说,这些国产AI大模型各有千秋,它们在不同的领域和任务上展现出不同的优势和局限性。
随着技术的不断进步和模型的持续优化,我们有理由相信,这些模型将在未来发挥更大的作用,为各行各业带来更多的创新和变革。
--------------------------------分割线----------------------------------
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。