引言
在这个信息爆炸的时代,我们每天都在和各种工具打交道,而DeepSeek作为一款智能问答工具,正逐步成为我们生活和工作中提高效率的得力助手。
但如何才能真正高效地使用DeepSeek,让它成为我们的生产力加速器,而不是仅仅当作一个普通的聊天机器人?本篇文章将深入探讨DeepSeek的高效使用技巧,帮助你在编程、内容创作、信息检索等多个场景下充分发挥它的潜力。
DeepSeek的核心基础功能
DeepSeek的功能非常强大,但不同的任务需要不同的模式,正确使用这些模式,才能让DeepSeek发挥最大价值。
1. 深度思考(R1):适用于不需要实时性的任务
如果你的问题不需要最新的信息,而是更偏向于推理、创作或编程等场景,那么“深度思考(R1)”模式是最佳选择。
-
• 适用场景:编程写代码、内容创作、数学推理等。
2. 联网搜索:适用于需要实时信息的问题
如果你需要获取最新的信息,比如当日新闻、市场行情、活动曝光等,联网搜索是你的好帮手。
-
• 适用场景:最新热点、实时新闻、行业动态。
3. 文件上传:让DeepSeek学会你的专属资料
DeepSeek不仅能回答通用问题,还能读取你上传的文档,帮助你进行专业知识的解析。
-
• 适用场景:论文阅读、合同解析、数据分析。
4. 如何精准提问,让DeepSeek理解你的需求?
想要让DeepSeek更好地理解你的问题,建议按照以下方式进行提问:
-
• 定义角色+背景信息+目标任务+输出要求
例如:
【角色】小红书文案专家
【背景】面向95后推广DeepSeek
【任务】撰写200字种草文
【要求】用“疯狂星期四”玩梗风格+3个emoji/段
如果你发现回答不太符合预期,可以进一步调整提问方式,例如提供示例或优化描述。
💡 实测彩蛋:首次回答后追加"请加入‘划重点’板块",答案完成度提升60%
让DeepSeek长期记忆你的需求
每次与DeepSeek交谈时,都需要重新描述问题背景,这在长时间使用中难免造成重复工作。为了解决这一问题,可以尝试以下方法:
-
• 保持同一对话窗口
-
初次问该类问题时,创建对应的问题助手。 在同一聊天框内进行相关问题的连续交流,让DeepSeek保持上下文记忆。例如,你可以为你的聊天命名为“中英文翻译助手”或“Java问题解决助手”,这样系统会在对话中“记住”你的需求背景,避免每次都从头解释。
-
我的DeepSeek聊天记录
我的chatGpt聊天记录
-
• 上下文唤醒秘籍
有对应的问题助手时,选择对应助手对话框进行提问。 在提问前,可以试着用下面的方式进行上下文唤醒:
-
• 新对话时输入:"延续3月15日用户增长方案讨论"
-
• 关键信息回溯:"还记得上周分析的618数据吗?请结合新政策解读"
避开API优惠时段使用
实际使用DeepSeek过程中,有用户反映总是服务器繁忙,我有关注到DeepSeek的服务器状态和优惠活动时间段。例如:
-
• API优惠时段
-
每天凌晨00:30至早上08:30,DeepSeek针对API接入会有一定的优惠,此时服务器的压力会相对较大,可能出现“服务器繁忙,请稍后再试”的提示。
-
DeepSeek开放平台
-
• 建议白天使用
-
根据我最近的使用情况看,白天使用DeepSeek体验更佳,响应速度更快,很少出现服务器繁忙的现象。因此,如果条件允许,尽量安排在白天进行较为重要的问题咨询。
追问不懈:用好每一次互动
最重要的一点是,追问是获得优质答案的关键。当初次提问后,若答案尚未达到预期,不妨再追问20次甚至更多,逐步引导DeepSeek挖掘出更深入的信息。
在对话的过程中,当遇到屡试不爽的提问时,将其记录下来,下次遇到类似问题时可以直接套用,提高沟通效率。这样不断地积累/记录最适合自己的提问模式,长期如此,你终将会成为一名AI使用高手。
提升使用体验的几个建议:
-
1. 深度追问:针对一个问题,可以多次追问,甚至换个角度再问。
-
2. 记录有效的提问方式:如果发现某种提问方式特别有效,记下来,以后可以重复使用。
-
3. 尝试不同的表达方式:换种说法,有时能得到更精准的回答。
结语
DeepSeek是一款功能强大的智能问答工具,能够在多种情境下为你提供高效解答。从基础功能的灵活选择、长对话窗口的记忆应用,到合理的使用时段以及不断追问探索的策略,每一项都蕴藏着提升工作效率的秘密。
关键在于,你只需多尝试、多总结,逐步摸索出一套适合自己的提问模式,就能让DeepSeek成为你生活和工作中不可或缺的“效率利器”。
未来,随着你与它的互动越来越多,你会发现,每一次对话都是进步的契机;而正是这种不断优化、不断追问的精神,让每一个细节都闪烁着智慧的光芒。
无论你是编程高手、内容创作者,还是日常生活中的信息达人,快来试试这些技巧,让DeepSeek带你体验前所未有的高效沟通吧!
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】