微软2025开发者大会震撼直击:全力拥抱Agent,开启AI新纪元!

Agent,Agent,Agent,Agent,Agent,Agent...

重要的话重复一万遍。

微软今天举行了 Microsoft Build 2025 开发者大会。

大会的开场活动,由 CEO Satya 亲自主持。

图片

我真的很惊讶微软在这次大会展示出的决心。

本次演讲,Satya 看似讲了很多内容,但归根结底,只有一项内容:

Agent

所有的内容,一点也不肯夸张,都是围绕这一主题展开。

大会的核心

微软的 Build 开发者大会,主要的内容都是面向开发者的(好像是句废话),所以这次没有任何消费者使用的终端产品。

一开始,Satya 就开门见山的说出,他们要:

Building the open agentic web (建立开放式的代理网络)

图片

方便开发者在“Agent”的各个层级进行创造。

图片

按照微软的分类,这些层级包括:

  • App 和 代理

  • AI 平台

  • 数据

  • 基础设施

这里涉及了很多产品,很多应用案例,无法全部给大家一一介绍。

就挑几个重要的给大家介绍下。

APP 和 代理

这一部分,主要是微软旗下的开发者工具生态,包括 Visual Studio, Visual Stuido Code 和 Github。

图片

Satya 强调,软件工程的基础,是要有合适的工具,才能实现创意,不断完善。微软在这方面从来没有松懈,一直在对开发者工具进行精进。

在 Github Copilot 这里,Satya 说:

这是一个巨大的进步,一个完整的编程代理,完全内嵌在 Github 之中。

图片

将 Copilot 从帮助你的编程工具,上升到跟你同级别的编程伙伴。

这不是在玩文字游戏,而是重新定义了角色的关系:

过去,你使用工具,它能按照你的要求完成具体工作。

现在,它是你的同事,你可以直接把任务交给他。

还现场将一个 Github 的 Issue 分配给了 Copilot:

图片

Copilot 需要自己分析 Issue 的内容,并自主完成任务,进行提交,合并等任务。

AI 平台

Azure

图片

这一部分,Satya 花了非常的篇幅来介绍:

AI 平台的使命,是智能的生产线。

Windows AI Foundry 提供统一可靠的平台,涵盖训练与推理在内的整个 AI 产品开发生命周期。

提供简易的 API,开发者可通过 Foundry Local 管理和运行开源 LLMs,或导入专有模型进行转换、微调并跨客户端与云端部署。

Satya 还介绍了 Azure 平台目前支持的模型状态,除了常见的 OpenAI、DeepSeek、Grok 之外:

图片

还可以通过 HuggingFace 无缝访问上万个前沿模型:

图片

上面提到的都是 Azure 上的内容,微软的云平台。对于本地设备,微软又给我们带来了什么?

Foundry Local

图片

这是干啥的,一句话说明:

让你在本地运行大模型的工具。 (就像 Ollama 一样)

具体的说,它可以让你:

  • 直接在您的本地硬件上运行生成式 AI 模型——无需注册。

  • 所有数据处理均在设备端完成,增强隐私与安全性。

  • 通过 OpenAI 兼容 API 将模型集成到您的应用程序中。

  • 利用 ONNX Runtime 和硬件加速优化性能。

MCP

如果你今年不支持 MCP,你出门都不好意思和人家打招呼。

微软也非常明白这一点,所以直接来了个大的:

图片

Windows 操作系统将原生支持 MCP。并且提供 Windows 操作系统级别的 MCP 服务器,也就是说,你可以:

  • 操作 Windows 文件系统

  • 对 Windows 进行设置

  • 操控 Windows APP

  • 管理窗口

这个的可玩性就很高了,这就给了 LLM 直接操控电脑的能力,造一个钢铁侠的 Jarvis 不再是梦,开发者一定要关注这个功能。

其它

微软的面子还是大,直接请来了 OpenAI 的山姆,Grok 的老马,Nvidia 的老黄给远程站台。

图片

(山姆主要谈论自动化编程工具)

图片

(老马主要谈论 Grok 模型)

图片

(老黄主要谈论的是基础架构方面的优化)

这几位来的目的大家都懂,属于商业互吹。

下面是微软 CTO 介绍 the open agentic web 的架构:

图片

(CTO Kevin Scott 介绍如何“Building the open agentic web”)

微软公布了一种新型开源工具 NLWeb(Natural Language Web),通过用户选择的模型和自有数据,为网站轻松创建丰富的自然语言界面,直接通过自然语言查询网站内容。

图片

(CTO Kevin Scott 介绍“NLWeb”)

图片

(微软正式开源 WSL)

图片

(微软通过 AI,加速科学研究)

这次大会的主题演讲,就像我在开头提到的,内容繁杂。

微软东西很多,怕你不知道,要一下全部都给你的感觉。

要选出我印象最深刻的,那就是 Windows 在操作系统级别支持 MCP。

要知道,MCP 这个概念才出来没多久。

直接这种级别的支持,确实罕见。

微软,拥抱Agent,这次是玩真的。

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员辣条

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值