李升伟 编译
自然计算科学卷 5, 页码1–2 (2025)
我们强调神经形态计算在提高AI能力、效率和性能方面的重要作用。
过去几年,人工智能(AI)已经改造了大量领域。值得注意的是,大型语言模型(LLMs)推动了类似人类对话的通用会话代理的发展,例如ChatGPT,以及专家、特定领域工具,包括但不限于NYUTron1——一个使用临床记录进行训练的通用临床预测引擎,以及ChemCrow2——一个旨在完成有机合成、药物发现和材料设计任务的代理。然而,在最先进的数字处理器上训练和实施这些大规模模型面临重大挑战,特别是在计算速度和能源成本方面。这种限制源于传统数字处理器的设计,将存储器和计算处理器分开——这被称为冯·诺依曼瓶颈。为了扩展AI系统,有必要研究替代计算架构。
Credit: Jorg Greuel / Getty Images
受人脑神经系统的启发,神经形态计算有可能解决传统数字计算中存在的上述瓶颈。神经形态计算机通过模仿大脑神经元和突触的结构和功能来进行计算。最终这意味着信息处理和存储是 collocated 并整合到人工神经系统的,自然避免了冯·诺依曼计算架构中固有的能源消耗的内存移动步骤。尽管神经形态处理器无疑为计算和扩展提供了巨大的潜力,但研究界仍然需要解决无数的挑战和差距。
为了促进一个协作环境来讨论这一新兴领域的发展和挑战,一组自然组合期刊组织——2024年10月——与清华大学合作举办了第二届自然神经形态计算会议,重点探讨神经形态计算在推动人工智能方面的变革力量。
会议涵盖了神经形态系统的多种物理实现,包括使用忆阻器、自旋电子设备和事件传感器。例如,利用忆阻器模仿人脑高效节能的突触和神经元,称为"在内存计算"(IMC),直接利用本地存储设备执行计算,从而避免了数据移动的能源密集型步骤。IMC不仅可以将AI任务部署在本地设备上(即AI在边缘)——这对于自动驾驶和临床诊断等各种应用至关重要——而且可以利用硬件的一些固有特性来进行计算任务——这对于实现忆阻器的全部潜力至关重要,正如Damien Querlioz在新闻与观点中所强调的那样。沿着这一研究方向,Bin Gao、Huaqiang Wu和同事在本期《自然计算科学》杂志的一篇文章中提出了在IMC框架内实现深度贝叶斯主动学习的方法。作者使用忆阻器阵列消除了在向量-矩阵乘法(VMM)期间的大量数据移动——这是机器学习训练过程中的一个常见步骤——并利用忆阻器的固有随机性特性为概率AI算法的训练生成高效的随机数,从而大大降低了时间延迟和功耗。
IMC的重要性可以进一步通过Julian Büchel、Abu Sebastian和同事在本期《自然计算科学》杂志上发表的一篇文章来说明。作者提出了一种三维(3D)构建非易失性存储器设备(NVM),以同时满足存储器要求并以更低的能源成本解决大型LLM的参数获取瓶颈。作者使用了一种条件计算模型,旨在降低推理成本和训练资源。然而,在数字处理器上实现条件计算,对于大型模型来说,众所周知是不切实际的,因为它通常需要数量级更多的参数以获得更好的性能。为了应对这一问题,作者证明了将条件计算机制映射到3D IMC架构可以成为扩展大型模型的一个有希望的方法。值得注意的是,VMM的计算效率也可以受益于NVM中的模拟操作,正如Anand Subramoney在新闻与观点中所强调的那样。
随着神经形态处理器的日益普及,找到实际应用变得比以往任何时候都重要。神经形态计算会议强调了这一趋势,讨论了许多潜在应用,例如医疗诊断、视觉适应和信号处理。此外,在各种演讲中还强调了硬件-软件协同设计(或算法指导的硬件设计)的概念,因为这被认为是实现在几个应用中充分利用神经形态处理器利益的关键。本期《自然计算科学》杂志包含一篇关于这一研究方向的文章,其中Zhongrui Wang、Dashan Shang和同事提出了一种硬件-软件协同设计方法,以实现跨模式、事件驱动信号的学习,以实现高效实时知识概括。在其他成果中,作者证明了他们的框架可以实现与人脑相当的能源效率和零样本跨模式智能。
尽管神经形态计算领域近年来取得了迅速进展,但仍存在几个尚未解决的挑战。例如,在本次会议中广泛讨论的一个问题是缺乏社区公认的基准数据集:如果没有标准化的基准,就很难准确衡量新技术的进步。诸如NeuroBench框架(参考文献3)等努力为此方面提供了一个良好的起点。另一个相关挑战是缺乏代码共享的最佳实践,因为与神经形态相关的源代码通常高度依赖于底层硬件。因此,为了促进新技术和新方法的传播,建立标准的实践或基础设施以共享代码和数据(同时考虑到硬件差异)是一个重要的步骤。解决这些挑战对于神经形态计算的持续成功至关重要。
原文链接:https://www.nature.com/articles/s43588-025-00770-4