函数间断点 | 可去间断点 / 第一类间断点 / 第二类间断点 / 狄利克雷函数和黎曼函数示例

注:机翻,未校。


Basic Definitions and Examples

基本定义与示例

在这里插入图片描述

Definition 5:If a point of discontinuity a ∈ E a\in E aE of the function f : E → R f:E\to\mathbb{R} f:ER is such that there exists a continuous function f ~ : E → R \tilde{f}:E\to\mathbb{R} f~:ER such that f ∣ E \ a = f ~ ∣ E \ a f|_{E\backslash a}=\tilde{f}|_{E\backslash a} fE\a=f~E\a , then a a a is called a removable discontinuity of the function f f f .

定义 5:如果函数 f : E → R f:E\to\mathbb{R} f:ER 存在不连续点 a ∈ E a\in E aE ,并且存在一个连续函数 f ~ : E → R \tilde{f}:E\to\mathbb{R} f~:ER ,使得 f f f E ∖ { a } E\setminus\{a\} E{a} (即集合 E E E 中去掉元素 a a a )上的限制等于 f ~ \tilde{f} f~ E ∖ { a } E\setminus\{a\} E{a} 上的限制,那么 a a a 就被称作函数 f f f 的可去间断点。

Thus a removable discontinuity is characterized by the fact that the limit lim ⁡ E ∋ x → a f ( x ) = A \lim_{E\ni x\to a}f(x)=A limExaf(x)=A exists, but A ≠ f ( a ) A\neq f(a) A=f(a) , and it suffices to set

f ~ ( x ) = { f ( x ) for  x ∈ E , x ≠ a A for  x = a \tilde{f}(x)=\begin{cases} f(x) & \text{for }x\in E,x\neq a\\ A & \text{for }x = a \end{cases} f~(x)={f(x)Afor xE,x=afor x=a
in order to obtain a function f ~ : E → R \tilde{f}:E\to\mathbb{R} f~:ER that is continuous at a a a .

因此,可去间断点的特点在于极限 lim ⁡ E ∋ x → a f ( x ) = A \lim_{E\ni x\to a}f(x)=A limExaf(x)=A 是存在的,但 A A A 不等于 f ( a ) f(a) f(a) ,并且只需设定

f ~ ( x ) = { f ( x ) 对于  x ∈ E 且 x ≠ a A 对于  x = a \tilde{f}(x)=\begin{cases} f(x) & \text{对于 }x\in E且x\neq a\\ A & \text{对于 }x = a \end{cases} f~(x)={f(x)A对于 xEx=a对于 x=a

这样就能得到一个在 a a a 点连续的函数 f ~ : E → R \tilde{f}:E\to\mathbb{R} f~:ER

Example 10:The function

f ( x ) = { sin ⁡ 1 x , for  x ≠ 0 0 , for  x = 0 f(x)=\begin{cases} \sin\frac{1}{x}, & \text{for }x\neq 0\\ 0, & \text{for }x = 0 \end{cases} f(x)={sinx1,0,for x=0for x=0
is discontinuous at 0. Moreover, it does not even have a limit as x → 0 x\to 0 x0 , since, as was shown Example 5 in Sect. 3.2.1, lim ⁡ x → 0 sin ⁡ 1 x \lim_{x\to 0}\sin\frac{1}{x} limx0sinx1 does not exist. The graph of the function sin ⁡ 1 x \sin\frac{1}{x} sinx1 is shown in Fig. 4.1.

例 10:函数

f ( x ) = { sin ⁡ 1 x , 当  x ≠ 0 0 , 当  x = 0 f(x)=\begin{cases} \sin\frac{1}{x}, & \text{当 }x\neq 0\\ 0, & \text{当 }x = 0 \end{cases} f(x)={sinx1,0, x=0 x=0
0 0 0 点是不连续的。而且,当 x x x 趋向于 0 0 0 时它甚至没有极限,因为正如在 3.2.1 节例 5 中所展示的那样, lim ⁡ x → 0 sin ⁡ 1 x \lim_{x\to 0}\sin\frac{1}{x} limx0sinx1 这个极限是不存在的。函数 sin ⁡ 1 x \sin\frac{1}{x} sinx1 的图像如图 4.1 所示。

Examples 8, 9 and 10 explain the following terminology.

例 8、9 和 10 解释了以下术语。

Definition 6:The point a ∈ E a\in E aE is called a discontinuity of first kind for the function f : E → R f:E\to\mathbb{R} f:ER if the following limits 2 ^2 2 exist:
lim ⁡ E ∋ x → a − 0 f ( x ) : = f ( a − 0 ) , lim ⁡ E ∋ x → a + 0 f ( x ) : = f ( a + 0 ) , \lim_{E\ni x\to a - 0}f(x):=f(a - 0),\quad\lim_{E\ni x\to a + 0}f(x):=f(a + 0), limExa0f(x):=f(a0),limExa+0f(x):=f(a+0),
but at least one of them is not equal to the value f ( a ) f(a) f(a) that the function assumes at a a a .

定义 6:对于函数 f : E → R f:E\to\mathbb{R} f:ER 来说,如果点 a ∈ E a\in E aE 满足以下极限 2 ^2 2 存在:

lim ⁡ E ∋ x → a − 0 f ( x ) : = f ( a − 0 ) (这里 lim ⁡ E ∋ x → a − 0 f ( x ) 表示 x 从 a 的左侧趋近于 a 时 f ( x ) 的极限,记为 f ( a − 0 ) ) , \lim_{E\ni x\to a - 0}f(x):=f(a - 0)\text{(这里}\lim_{E\ni x\to a - 0}f(x)\text{表示}x\text{从}a\text{的左侧趋近于}a\text{时}f(x)\text{的极限,记为}f(a - 0)\text{)}, limExa0f(x):=f(a0)(这里limExa0f(x)表示xa的左侧趋近于af(x)的极限,记为f(a0),

lim ⁡ E ∋ x → a + 0 f ( x ) : = f ( a + 0 ) (表示 x 从 a 的右侧趋近于 a 时 f ( x ) 的极限,记为 f ( a + 0 ) ) , \lim_{E\ni x\to a + 0}f(x):=f(a + 0)\text{(表示}x\text{从}a\text{的右侧趋近于}a\text{时}f(x)\text{的极限,记为}f(a + 0)\text{)}, limExa+0f(x):=f(a+0)(表示xa的右侧趋近于af(x)的极限,记为f(a+0), 但至少其中一个极限值不等于函数 f f f a a a 点所取的值 f ( a ) f(a) f(a) ,那么点 a a a 就被称为函数 f f f 的第一类间断点。

2 ^2 2 If a a a is a discontinuity, then a a a must be a limit point of the set E E E . It may happen, however, that all the points of E E E in some neighborhood of a a a lie on one side of a a a . In that case, only one of the limits in this definition is considered.

2 ^2 2 如果 a a a 是一个间断点,那么 a a a 必定是集合 E E E 的极限点。然而,有可能出现这样的情况:在 a a a 的某个邻域内,集合 E E E 中的所有点都位于 a a a 的一侧。在这种情况下,此定义中只考虑这两个极限(即左极限和右极限)中的一个。

Definition 7:If a ∈ E a\in E aE is a point of discontinuity of the function f : E → R f:E\to\mathbb{R} f:ER and at least one of the two limits in Definition 6 does not exist, then a a a is called a discontinuity of second kind.

定义 7:如果 a ∈ E a\in E aE 是函数 f : E → R f:E\to\mathbb{R} f:ER 的一个间断点,并且定义6中的两个极限(即左极限和右极限)至少有一个不存在,那么 a a a 就被称作第二类间断点。

Thus what is meant is that every point of discontinuity that is not a discontinuity of first kind is automatically a discontinuity of second kind.

这意味着,每一个不是第一类间断点的间断点,自然就属于第二类间断点。

Let us present two more classical examples.

让我们再给出两个经典的例子。

Example 11:The function

D ( x ) = { 1 , if  x ∈ Q 0 , if  x ∈ R \ Q \mathcal{D}(x)=\begin{cases} 1, & \text{if }x\in\mathbb{Q}\\ 0, & \text{if }x\in\mathbb{R}\backslash\mathbb{Q} \end{cases} D(x)={1,0,if xQif xR\Q
is called the Dirichlet function. 3 ^3 3

例11:函数
D ( x ) = { 1 , 若  x ∈ Q (即 x 是有理数) 0 , 若  x ∈ R ∖ Q (即 x 是无理数) \mathcal{D}(x)=\begin{cases} 1, & \text{若 }x\in\mathbb{Q}(即x是有理数)\\ 0, & \text{若 }x\in\mathbb{R}\setminus\mathbb{Q}(即x是无理数) \end{cases} D(x)={1,0, xQ(即x是有理数) xRQ(即x是无理数)

被称作狄利克雷函数。 3 ^3 3

This function is discontinuous at every point, and obviously all of its discontinuities are of second kind, since in every interval there are both rational and irrational numbers.

这个函数在每一点都是不连续的,而且显然它所有的间断点都属于第二类间断点,因为在每一个区间内都既有有理数又有无理数。

Example 12:Consider the Riemann function 4 ^4 4

R ( x ) = { 1 n , if  x = m n ∈ Q ,  where  m n  is in lowest terms , n ∈ N 0 , if  x ∈ R \ Q \mathcal{R}(x)=\begin{cases} \frac{1}{n}, & \text{if }x=\frac{m}{n}\in\mathbb{Q},\text{ where }\frac{m}{n}\text{ is in lowest terms}, n\in\mathbb{N}\\ 0, & \text{if }x\in\mathbb{R}\backslash\mathbb{Q} \end{cases} R(x)={n1,0,if x=nmQ, where nm is in lowest terms,nNif xR\Q

例 12:考虑黎曼函数 4 ^4 4

R ( x ) = { 1 n , 若  x = m n ∈ Q (即 x 是有理数,且 m n 是最简分数形式, n ∈ N ) 0 , 若  x ∈ R ∖ Q (即 x 是无理数) \mathcal{R}(x)=\begin{cases} \frac{1}{n}, & \text{若 }x=\frac{m}{n}\in\mathbb{Q}(即x是有理数,且\frac{m}{n}是最简分数形式,n\in\mathbb{N})\\ 0, & \text{若 }x\in\mathbb{R}\setminus\mathbb{Q}(即x是无理数) \end{cases} R(x)={n1,0, x=nmQ(即x是有理数,且nm是最简分数形式,nN xRQ(即x是无理数)

We remark that for any point a ∈ R a\in\mathbb{R} aR , any bounded neighborhood U ( a ) U(a) U(a) of it, and any number N ∈ N N\in\mathbb{N} NN , the neighborhood U ( a ) U(a) U(a) contains only a finite number of rational numbers m n \frac{m}{n} nm , m ∈ Z m\in\mathbb{Z} mZ , n ∈ N n\in\mathbb{N} nN , with n < N n < N n<N .

我们要指出的是,对于任意实数 a ∈ R a\in\mathbb{R} aR ,它的任意有界邻域 U ( a ) U(a) U(a) 以及任意自然数 N ∈ N N\in\mathbb{N} NN ,邻域 U ( a ) U(a) U(a) 中只包含有限个有理数 m n \frac{m}{n} nm (其中 m ∈ Z m\in\mathbb{Z} mZ n ∈ N n\in\mathbb{N} nN 并且 n < N n < N n<N )。

By shrinking the neighborhood, one can then assume that the denominators of all rational numbers in the neighborhood (except possibly for the point a a a itself if a ∈ Q a\in\mathbb{Q} aQ ) are larger than N N N . Thus at any point x ∈ U ˙ ( a ) x\in\dot{U}(a) xU˙(a) we have ∣ R ( x ) ∣ < 1 / N |\mathcal{R}(x)| < 1/N R(x)<1/N .

通过缩小这个邻域,我们可以假定邻域内(除了可能的点 a a a 本身,如果 a a a 是有理数的话)所有有理数的分母都大于 N N N 。因此,对于任意点 x ∈ U ˙ ( a ) x\in\dot{U}(a) xU˙(a) (这里 U ˙ ( a ) \dot{U}(a) U˙(a) 表示去心邻域),我们有 ∣ R ( x ) ∣ < 1 / N |\mathcal{R}(x)| < 1/N R(x)<1/N

We have thereby shown that

lim ⁡ x → a R ( x ) = 0 \lim_{x\to a}\mathcal{R}(x)=0 limxaR(x)=0

at any point a ∈ R \ Q a\in\mathbb{R}\backslash\mathbb{Q} aR\Q . Hence the Riemann function is continuous at any irrational number. At the remaining points, that is, at points x ∈ Q x\in\mathbb{Q} xQ , the function is discontinuous, except at the point x = 0 x = 0 x=0 , and all of these discontinuities are discontinuities of first kind.

由此我们证明了,对于任意无理数点 a ∈ R ∖ Q a\in\mathbb{R}\setminus\mathbb{Q} aRQ ,都有 lim ⁡ x → a R ( x ) = 0 \lim_{x\to a}\mathcal{R}(x)=0 limxaR(x)=0 。因此,黎曼函数在任意无理数点处是连续的。在其余的点,也就是有理数点 x ∈ Q x\in\mathbb{Q} xQ 处,该函数是不连续的,除了 x = 0 x = 0 x=0 这一点,并且这些间断点都是第一类间断点。

3 ^3 3 P.G. Dirichlet (1805–1859) – great German mathematician, an analyst who occupied the post of professor ordinarius at Göttingen University after the death of Gauss in 1855.

3 ^3 3 P.G.狄利克雷(1805 - 1859)——伟大的德国数学家,分析学家,在1855年高斯去世后,他担任哥廷根大学正教授这一职位。

4 ^4 4 B.F. Riemann (1826–1866) – outstanding German mathematician whose ground-breaking works laid the foundations of whole areas of modern geometry and analysis.

4 ^4 4 B.F.黎曼(1826 - 1866)——杰出的德国数学家,他那些开创性的工作为现代几何和分析的多个领域奠定了基础。


via: Zorich

狄利克雷函数是一个在数学分析中特别重要的函数,它在每个有理数上的函数值为1,在每个无理数上的函数值为0。在传统的黎曼积分框架下,狄利克雷函数被认为是不可积的,因为按照黎曼积分的定义,一个函数要可积,必须满足在任意划分的小区上,上的极限相等,而狄利克雷函数在任何区上都呈现出无限多的震荡,无法找到这样的划分使得上的极限相等。这导致了黎曼积分在此函数上的局限性。 参考资源链接:[勒贝格积分与狄利克雷函数解析](https://wenku.csdn.net/doc/43x8734hcd?spm=1055.2569.3001.10343) 然而,勒贝格积分的引入为处理这类函数提供了新的可能性。勒贝格积分考虑了函数的“大小”与区的“长度”之的关系,它基于测度论,将积分的定义与函数值的态特性分离,转而关注于函数值的分布。在勒贝格积分的框架下,积分不再依赖于区划分的方式,而是通过测量函数值在一个区内所占的比例来定义的。 对于狄利克雷函数而言,虽然在每一个单独的区函数值看似随机地跳跃,但如果从整个实数轴上考虑,所有有理数构成的集合是“零测集”,其“长度”(勒贝格测度)为零,而所有无理数构成的集合是整个实数轴,其勒贝格测度为正无穷。因此,狄利克雷函数在整个实数轴上的积分可以看作是“几乎处处”为零的函数与无限大的测度相乘的结果,根据勒贝格积分的定义,这个积分为零。 这样的处理展示了勒贝格积分相比于黎曼积分的优越性,它能够更好地处理那些在黎曼意义下不可积的函数,通过测度论的方式更准确地描述函数的性质。如果你希望更深入地理解勒贝格积分的原理应用,建议阅读《勒贝格积分与狄利克雷函数解析》这本书,它不仅详细阐述了勒贝格积分的基础理论,还通过狄利克雷函数这一典型例子来直观展示其概念。 参考资源链接:[勒贝格积分与狄利克雷函数解析](https://wenku.csdn.net/doc/43x8734hcd?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值