【数据挖掘】实验7:高级绘图(上)

实验7:高级绘图(上)

一:实验目的与要求

1:了解R语言中各种图形元素的添加方法,并能够灵活应用这些元素。

2:了解R语言中的各种图形函数,掌握常见图形的绘制方法。

二:实验内容

【lattice包绘图】

Eg.1:以mtcars数据集为例,绘制车身重量(wt)与每加仑汽油行驶的英里数(mpg)的散点图

library('lattice')

xyplot(wt ~ mpg, data = mtcars, xlab = 'Weight', ylab = 'Miles per Gallon', main = 'lattice包绘制散点图')

Eg.2:查看参数列表名称

names(trellis.par.get())

Eg.3:fontsize查看字体大小和散点大小的参数

op <- trellis.par.get()

trellis.par.get('fontsize')

trellis.par.set(fontsize = list(text = 20, points = 20))

xyplot(wt ~ mpg, data = mtcars, xlab = 'Weight', ylab = 'Miles per Gallon', main = 'lattice包绘制散点图')

trellis.par.set(op)


Eg.4:图形化显示所有参数

show.settings()

Eg.5:以Species(鸢尾花种类)为条件变量绘制Sepal.Length(花萼长度)与Sepal.Width(花萼宽度)的散点图

library(lattice)

attach(iris)

xyplot(Sepal.Length ~ Sepal.Width | Species)

detach(iris)

Eg.6:面板函数

my_panel <- function(x,y){

  panel.lmline(x, y, col = "red", lwd = 1, lty = 2)

  panel.loess(x,y)

  panel.grid(h = -1, v = -1)

  panel.rug(x, y)

  panel.xyplot(x, y)

}

xyplot(mpg ~ wt, data = mtcars, xlab = "Weight", ylab = "Miles per Gallon",main = "Miles per Gallon on Weight", panel = my_panel)

Eg.7:分组变量

xyplot(Sepal.Length ~ Sepal.Width, group = Species, data = iris,pch = 1:3, col = 1:3, main = 'Sepal.Length VS Sepal.Width', key = list(space = "right", title = "Species", cex.title = 1, cex = 1, text = list(levels(factor(iris$Species))), points=list(pch = 1:3, col= 1:3)))

Eg.8:图形组合

graph1 <- xyplot(Sepal.Length ~ Sepal.Width | Species, data = iris, main = '栅栏图')

graph2 <- xyplot(Sepal.Length ~ Sepal.Width, group = Species, data = iris, main = '散点图1')

graph3 <- xyplot(Petal.Length ~ Petal.Width, group = Species, data = iris, main = '散点图2')

# split函数

plot(graph1, split = c(1,1,3,1))

plot(graph2, split = c(2,1,3,1),newpage=F)

plot(graph2, split = c(3,1,3,1),newpage=F)

# position函数

plot(graph1, position = c(0, 0, 1/3, 1))

plot(graph2, position = c(1/3, 0, 2/3, 1), newpage = F)

plot(graph3, position = c(2/3, 0, 1, 1), newpage = F)

Eg.9:条形图

barchart(VADeaths, main = 'Death Rates in 1940 Virginia(By Group)')

barchart(VADeaths, groups = FALSE, main = list("Death Rates in 1940 Virginia", cex = 1.2))

Eg.10:泰塔尼克号航行中不同人群获救与否的人数情况

str(Titanic)

as.data.frame(Titanic)

pic1 <- barchart(Class ~ Freq|Age + Sex, data = as.data.frame(Titanic), groups = Survived, stack = TRUE, auto.key = list(title = "Survived", columns = 2))

pic2 <- barchart(Class ~ Freq|Age + Sex, data = as.data.frame(Titanic), groups = Survived, stack = TRUE, auto.key = list(title = "Survived", columns = 2), scales = list(x = "free"))

pic3 <- update(pic2, panel=function(...){

  panel.grid(h=0,v=-1)

  panel.barchart(...,border = "Transparent")

})

plot(pic1, split = c(1,1,3,1))

plot(pic2, split = c(2,1,3,1), newpage = FALSE)

plot(pic3, split = c(3,1,3,1), newpage = FALSE)

Eg.11:点图

dotplot(VADeaths, pch = 1:4, xlab = 'Death rates per 1000',

        main = list('Death Rates in 1940 Virginia (By Group)', cex = 0.8),

        key = list(column = 4, text = list(colnames(VADeaths)), points = list(pch = 1:4, col =1:4)))

dotplot(VADeaths, group = FALSE, xlab = 'Death rates per 1000',main = list('Death Rates in 1940 Virginia', cex = 0.8))

Eg.12:直方图

histogram( ~ height | voice.part, data = singer, nint = 17, layout = c(1,8), xlab = "Height(inches)")

Eg.13:核密度图

densityplot( ~ height | voice.part, data = singer, layout=c(1, 8), xlab = "Height (inches)",main = "Heights of New York Choral Society singers")

Eg.14:叠加核密度图

densityplot( ~ height, group = voice.part, data = singer, xlab = "Height (inches)" , plot.points = FALSE,main = "Heights of New York Choral Society singers", lty = 1:8, col = 1:8, lwd = 1.5,key = list(text = list(levels(singer$voice.part)), column = 4, lines = list(lty = 1:8, col = 1:8)))

Eg.15:添加核密度图

histogram( ~ height | voice.part, data = singer,

           xlab = "Height (inches)", type = "density",

           panel = function(x, ...) {

          panel.histogram(x, ...)

          panel.mathdensity(dmath = dnorm, col = "black",

          args = list(mean=mean(x),sd=sd(x)))

})

Eg.16:带状图

nrow(singer[singer$voice.part == 'Bass 2', ])

stripplot(~ height, group = voice.part, data = singer, xlab = "Height (inches)",

main = "Heights of New York Choral Society singers",

          subset = (voice.part == "Bass 2"),jitter.data=T)

Eg.17:QQ图

qqmath(~ height | voice.part, data = singer, prepanel = prepanel.qqmathline,

       panel = function(x, ...) {

       panel.qqmathline(x, ...)

       panel.qqmath(x, ...)

       })

qq(voice.part ~ height, aspect = 1, data = singer,subset = (voice.part == "Bass 2" | voice.part == "Tenor 2"))

Eg.18:箱线图

pic1 <- bwplot( ~ height | voice.part, data=singer, xlab="Height (inches)")

pic2 <- bwplot(voice.part ~ height, data=singer, xlab="Height (inches)")

plot(pic1, split = c(1, 1, 2, 1))

plot(pic2, split = c(2, 1, 2, 1), newpage = FALSE)

Eg.19:散点图

xyplot(Sepal.Length~Sepal.Width|Species,data=iris)

Eg.20:散点矩阵图

splom(iris[, 1:4], groups = iris$Species, pscales = 0, pch = 1:3, col = 1:3, varnames = colnames(iris)[1:4],key = list(columns = 3, text = list(levels(iris$Species)), points = list(pch = 1:3, col = 1:3)))

Eg.21:三维水平图

data(Cars93, package = "MASS")

cor.Cars93 <-cor(Cars93[, !sapply(Cars93, is.factor)], use = "pair")

levelplot(cor.Cars93, scales = list(x=list(rot=90)))

Eg.22:三维等高线

contourplot(volcano, cuts = 20)

Eg.23:三维散点图

par.set <-list(axis.line = list(col = "transparent"), clip = list(panel = "off")) # 去除边框,不削减面板范围

cloud(Sepal.Length ~ Petal.Length * Petal.Width, data = iris, groups = Species,

        pch = 1:3,col= 1:3, # 点颜色及样式

        screen = list(z = 20, x = -70, y =0), # 调节三维散点图的展示角度

        par.settings = par.set,

        scales = list(col = "black"), # 加箭头指示

        key=list(column=3, text=list(levels(iris$Species)), points = list(pch = 1:3, col = 1:3)))


Eg.24:三维曲面图

par.set <-list(axis.line = list(col = "transparent"), clip = list(panel = "off")) # 去除边框,不削减面板范围

wireframe(volcano, shade = TRUE, par.settings = par.set, aspect = c(61/87, 0.4))

【ggplot2包绘图】

Eg.1:qplot函数

library(ggplot2)

qplot(Species, Sepal.Length, data = iris, geom = "boxplot", fill = Species,main = "依据种类分组的花萼长度箱线图")

qplot(Species, Sepal.Length, data = iris, geom = c("violin", "jitter"), fill = Species,main = "依据种类分组的花萼长度小提琴图")

qplot(Sepal.Length, Sepal.Width, data = iris, colour = Species, shape = Species,main = "绘制花萼长度和花萼宽度的散点图")

qplot(Sepal.Length, Sepal.Width, data = iris, geom = c("point", "smooth"), facets = ~Species,colour = Species, main = "绘制分面板的散点图")

Eg.2:语言逻辑

plot(iris$Sepal.Length, iris$Sepal.Width)

library(ggplot2)

ggplot(data= iris, aes(x = Sepal.Length, y = Sepal.Width)) + #绘制底层画布

geom_point(color = "darkred") #在画布上添加点

Eg.3:绘制画布

ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width, colour = Species, shape = Species))

Eg.4:几何对象

#  方法1

ggplot(data = iris, aes(x = Sepal.Length, y = Sepal.Width, colour = Species, shape = Species))+geom_point()

# 方法2

ggplot(data = iris) + geom_point(aes(x = Sepal.Length, y = Sepal.Width, colour = Species, shape = Species))

Eg.5:统计变换

# 方法1

ggplot(iris) + geom_bar(aes(x=Sepal.Length), stat="bin", binwidth = 0.5)

# 方法2

ggplot(iris) + stat_bin(aes(x=Sepal.Length), geom="bar", binwidth = 0.5)

Eg.6:标尺设置

set.seed(1234) # 设置随机种子

my_iris <- iris[sample(1:150, 100, replace = FALSE),] # 随机抽样

p <- ggplot(my_iris) + geom_bar(aes(x = Species, fill = Species))

p # 左图

p$scales # 查看p的标尺参数

p + scale_fill_manual(

  values = c("orange", "olivedrab", "navy"), # 颜色设置

  breaks = c("setosa", "versicolor", "virginica"), # 图例和轴要显示的分段点

  name = "my_Species", # 图例和轴使用的名称

  labels = c("set", "ver", "vir") # 图例使用的标签

  ) # 右图

Eg.7:修改图形的颜色

ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, colour = Species))+

  scale_color_manual(values = c("orange", "olivedrab", "navy"))+

  geom_point(size = 2)

ggplot(iris,aes(x = Sepal.Length, y = Sepal.Width, colour = Species))+

  scale_color_brewer(palette = "Set1")+

  geom_point(size=2)

Eg.8:坐标系转换

# 饼图 = 堆叠长条图 + polar coordinates

pie <- ggplot(my_iris, aes(x = factor(1), fill = Species)) +geom_bar(width = 1)

pie + coord_polar(theta = "y")

# 靶心图 = 饼图 + polar coordinates

pie + coord_polar()

#锯齿图 = 柱状图 + polar coordinates

cxc <- ggplot(my_iris, aes(x = Species)) +geom_bar(width = 1, colour = "black")

cxc + coord_polar()

 

Eg.9:分面

library(ggplot2)

library(tidyr)

library(dplyr)

my_iris1 <- iris %>% gather(feature_name, feature_value, one_of(c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"))) # 数据变换

ggplot(my_iris1) +geom_violin(aes(x = Species, y = feature_value)) + facet_grid(feature_name ~ Species, scales = "free") # 分面

Eg.10:facet-wrap函数

ggplot(my_iris1) + geom_violin(aes(x = Species, y = feature_value)) + facet_wrap(~ feature_name + Species, scales = "free")

Eg.11:保存图形

ggplot(iris, aes(x = Sepal.Length, y = Sepal.Width, colour = Species))+geom_point(size = 2)

ggsave(file = "mygraph.pdf", width = 5, height = 4)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MorleyOlsen

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值