10.1 多项式空间线性映射


  前面说了向量就是线性组合的数学表示,线性映射就是把这种这种组合变成另一种组合,在我之前的文章中说过多项式乘法就是一种线性映射。而线性映射的重点是将线性映射用矩阵表示,但是要搞清楚变换矩阵是怎么来的。证明过程和细节我就不说了,我就接着上次的例子讲讲线性变换的矩阵形式是怎么来的。
  欧几里得空间我就不讲了,重点说说多项式空间,我觉得以多项式空间为例子,一来内容不会和以前的博文重复,二来更具一般性,因为欧几里得空间太常见了。线性映射的核心要义就是,一个线性映射把自然基变成什么样子,那么它的表示矩阵就是什么样子,为此我用多项式空间的几个例子来说明。
  如果一个线性映射转换后的向量还在原来的向量空间,这样的线性映射就叫做线性变换。

多项式乘法

  假设有这么一个多项式 3 x 2 + x + 4 3x^2+x+4 3x2+x+4,它去乘最多两次多项式,得到的结果是最多四次多项式,也就是一个五维的向量,怎么用矩阵表示它呢?首先还是那句话,看它把自然基变成什么样子。最多两次多项式有三个基: 1 , x , x 2 1,x,x^2 1,x,x2,我们列出来:
1 → 3 x 2 + x + 4 x → 3 x 3 + x 2 + 4 x x 2 → 3 x 4 + x 3 + 4 x 2 1 \to 3x^2+x+4\\ x \to 3x^3+x^2+4x\\ x^2 \to 3x^4+x^3+4x^2 13x2+x+4x3x3+x2+4xx23x4+x3+4x2
  再把这三个变换后的多项式用向量表示,组合起来就可以了,就成为下列矩阵:
( 4 0 0 1 4 0 3 1 4 0 3 1 0 0 3 ) \begin{pmatrix} 4 & 0 & 0\\ 1 & 4 & 0\\ 3 & 1 & 4\\ 0 & 3 & 1\\ 0 & 0 & 3 \end{pmatrix}\\ 413000413000413
  然后可以变换一个多项式试一试,比如 3 x 2 + 2 x + 1 3x^2+2x+1 3x2+2x+1,用向量表示就是 ( 1 , 2 , 3 ) T (1,2,3)^T (1,2,3)T,用矩阵乘法代替变换就是:
( 4 0 0 1 4 0 3 1 4 0 3 1 0 0 3 ) ( 1 2 3 ) = ( 4 9 17 9 9 ) \begin{pmatrix} 4 & 0 & 0\\ 1 & 4 & 0\\ 3 & 1 & 4\\ 0 & 3 & 1\\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}= \begin{pmatrix} 4\\ 9\\ 17\\ 9\\ 9 \end{pmatrix} 413000413000413 123 = 491799
  所以结果就是 ( 3 x 2 + x + 4 ) ( 3 x 2 + 2 x + 1 ) = 9 x 4 + 9 x 3 + 17 x 2 + 9 x + 4 (3x^2+x+4)(3x^2+2x+1)=9x^4+9x^3+17x^2+9x+4 (3x2+x+4)(3x2+2x+1)=9x4+9x3+17x2+9x+4.因为这个变换把三维向量变成了五维向量,所以不是线性变换,而是一个线性映射。

多项式求导

  多项式求导,也是一种线性变换,可以用同样的方法来做,比如对最多四次多项式进行求导,可以写出它的变换矩阵,我们照着套路来:
1 → 0 x → 1 x 2 → 2 x x 3 → 3 x 2 x 4 → 4 x 3 1 \to 0\\ x \to 1\\ x^2 \to 2x\\ x^3 \to 3x^2\\ x^4 \to 4x^3 10x1x22xx33x2x44x3
  所以求导这个线性变换的表示矩阵就是:
( 0 1 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 4 0 0 0 0 0 ) \begin{pmatrix} 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 2 & 0 & 0\\ 0 & 0 & 0 & 3 & 0\\ 0 & 0 & 0 & 0 & 4\\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} 0000010000020000030000040
  那我们对 x 4 + 2 x 3 + 3 x 2 + 4 x + 5 x^4+2x^3+3x^2+4x+5 x4+2x3+3x2+4x+5求导,就可以转换为矩阵乘法:
( 0 1 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 4 0 0 0 0 0 ) ( 5 4 3 2 1 ) = ( 4 6 6 4 0 ) \begin{pmatrix} 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 2 & 0 & 0\\ 0 & 0 & 0 & 3 & 0\\ 0 & 0 & 0 & 0 & 4\\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 5\\ 4\\ 3\\ 2\\ 1 \end{pmatrix}= \begin{pmatrix} 4\\ 6\\ 6\\ 4\\ 0 \end{pmatrix} 0000010000020000030000040 54321 = 46640
  所以结果就是 ( x 4 + 2 x 3 + 3 x 2 + 4 x + 5 ) ′ = 4 x 3 + 6 x 2 + 6 x + 4 (x^4+2x^3+3x^2+4x+5)'=4x^3+6x^2+6x+4 (x4+2x3+3x2+4x+5)=4x3+6x2+6x+4.
  维数没变化,所以这个映射是线性变换。

多项式积分

  求导可以,积分也是可以的。以最多四次多项式为例子,还是固定的套路:
∫ 1 = x + C ∫ x = 1 2 x 2 + C ∫ x 2 = 1 3 x 3 + C ∫ x 3 = 1 4 x 4 + C ∫ x 4 = 1 5 x 5 + C \int 1 = x + C\\ \int x = \frac{1}2x^2 + C\\ \int x^2 = \frac{1}3x^3 + C\\ \int x^3 = \frac{1}4x^4 + C\\ \int x^4 = \frac{1}5x^5 + C 1=x+Cx=21x2+Cx2=31x3+Cx3=41x4+Cx4=51x5+C
  所以求积分的变换矩阵就为:
( 0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 0 1 3 0 0 0 0 0 1 4 0 0 0 0 0 1 5 ) \begin{pmatrix} 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0\\ 0 & \frac{1}{2} & 0 & 0 & 0\\ 0 & 0 & \frac{1}{3} & 0 & 0\\ 0 & 0 & 0 & \frac{1}{4} & 0\\ 0 & 0 & 0 & 0 & \frac{1}{5} \end{pmatrix} 0100000021000000310000004100000051
  所以对 x 4 + 2 x 3 + 3 x 2 + 4 x + 5 x^4+2x^3+3x^2+4x+5 x4+2x3+3x2+4x+5求积分可以转为矩阵乘法:
( 0 0 0 0 0 1 0 0 0 0 0 1 2 0 0 0 0 0 1 3 0 0 0 0 0 1 4 0 0 0 0 0 1 5 ) ( 5 4 3 2 1 ) = ( 0 5 2 1 1 2 1 5 ) \begin{pmatrix} 0 & 0 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 0\\ 0 & \frac{1}{2} & 0 & 0 & 0\\ 0 & 0 & \frac{1}{3} & 0 & 0\\ 0 & 0 & 0 & \frac{1}{4} & 0\\ 0 & 0 & 0 & 0 & \frac{1}{5} \end{pmatrix} \begin{pmatrix} 5\\ 4\\ 3\\ 2\\ 1 \end{pmatrix}= \begin{pmatrix} 0\\ 5\\ 2\\ 1\\ \frac{1}{2}\\ \frac{1}{5} \end{pmatrix} 0100000021000000310000004100000051 54321 = 05212151
  所以积分的结果就出来了:
∫ x 4 + 2 x 3 + 3 x 2 + 4 x + 5 = 1 5 x 5 + 1 2 x 4 + x 3 + 2 x 2 + 5 x + C \int x^4+2x^3+3x^2+4x+5 = \frac{1}{5}x^5+\frac{1}{2}x^4+x^3+2x^2+5x+C x4+2x3+3x2+4x+5=51x5+21x4+x3+2x2+5x+C
  五维变六维了,所以这是一个线性映射。

  • 2
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值