6.7 广义特征向量与特征空间


  之前把广义特征向量放在特征值的第一篇文章里,我后来觉得对初学者太不友好了,所以剪出来,单独作为一篇文章。

1 特征空间

  前面说过矩阵不过是把自己的特征向量给延长或缩短了,为了求特征值和特征向量,我们有以下的方程:
( A − λ I ) v = 0 (A-\lambda I)v=0 (AλI)v=0
  把某个特征值代进去,得到的 A − λ I A-\lambda I AλI是一个矩阵,这个矩阵会把对应的特征向量变成0向量。这群向量构成了一个空间,这个空间就叫做特征空间
  可以举个例子:
A = ( 2.0 1.0 − 1.0 1.0 2.0 − 1.0 − 1.0 − 1.0 2.0 ) A − λ I = ( 1.0 1.0 − 1.0 1.0 1.0 − 1.0 − 1.0 − 1.0 1.0 ) A=\begin{pmatrix} 2.0 & 1.0 & -1.0\\ 1.0 & 2.0 & -1.0\\ -1.0 & -1.0 & 2.0 \end{pmatrix}\\ A-\lambda I=\begin{pmatrix} 1.0 & 1.0 & -1.0\\ 1.0 & 1.0 & -1.0\\ -1.0 & -1.0 & 1.0 \end{pmatrix}\\ A= 2.01.01.01.02.01.01.01.02.0 AλI= 1.01.01.01.01.01.01.01.01.0
  然后我们根据定义解下齐次线性方程组就可以了。
( 1.0 1.0 − 1.0 1.0 1.0 − 1.0 − 1.0 − 1.0 1.0 ) ∼ ( 1.0 1.0 − 1.0 0.0 0.0 0.0 0.0 0.0 0.0 ) ∴ v = k 1 ( 1 0 1 ) + k 2 ( 0 1 1 ) \begin{pmatrix} 1.0 & 1.0 & -1.0\\ 1.0 & 1.0 & -1.0\\ -1.0 & -1.0 & 1.0 \end{pmatrix} \sim \begin{pmatrix} 1.0 & 1.0 & -1.0\\ 0.0 & 0.0 & 0.0\\ 0.0 & 0.0 & 0.0 \end{pmatrix}\\ \therefore v=k_1\begin{pmatrix}1\\0\\1\end{pmatrix}+k_2\begin{pmatrix}0\\1\\1\end{pmatrix} 1.01.01.01.01.01.01.01.01.0 1.00.00.01.00.00.01.00.00.0 v=k1 101 +k2 011
  所以这个特征空间的两个基就求出来了。我们再试一下下一个特征值4:
A = ( 2.0 1.0 − 1.0 1.0 2.0 − 1.0 − 1.0 − 1.0 2.0 ) A − λ I = ( − 2.0 1.0 − 1.0 1.0 − 2.0 − 1.0 − 1.0 − 1.0 − 2.0 ) A=\begin{pmatrix} 2.0 & 1.0 & -1.0\\ 1.0 & 2.0 & -1.0\\ -1.0 & -1.0 & 2.0 \end{pmatrix}\\ A-\lambda I=\begin{pmatrix} -2.0 & 1.0 & -1.0\\ 1.0 & -2.0 & -1.0\\ -1.0 & -1.0 & -2.0 \end{pmatrix}\\ A= 2.01.01.01.02.01.01.01.02.0 AλI= 2.01.01.01.02.01.01.01.02.0
  同样,解一下这个齐次方程组:
( − 2.0 1.0 − 1.0 1.0 − 2.0 − 1.0 − 1.0 − 1.0 − 2.0 ) ∼ ( − 2.0 1.0 − 1.0 0.0 1.0 1.0 0.0 0.0 0.0 ) ∴ v = k ( 0 1 1 ) \begin{pmatrix} -2.0 & 1.0 & -1.0\\ 1.0 & -2.0 & -1.0\\ -1.0 & -1.0 & -2.0 \end{pmatrix} \sim \begin{pmatrix} -2.0 & 1.0 & -1.0\\ 0.0 & 1.0 & 1.0\\ 0.0 & 0.0 & 0.0 \end{pmatrix}\\ \therefore v=k\begin{pmatrix}0\\1\\1\end{pmatrix} 2.01.01.01.02.01.01.01.02.0 2.00.00.01.01.00.01.01.00.0 v=k 011
  这样两个特征值的特征空间就求出来了。

2 广义特征向量

  有了特征向量和特征向量构成的特征空间,我们知道 A − λ I A-\lambda I AλI可以把特征空间里的向量变成0。我们再想想, ( A − λ I ) 2 (A-\lambda I)^2 (AλI)2能不能把某个向量变成0呢?三次方呢?四次方呢?有了方向,数学家们就开始思考了,于是有了广义特征向量的定义:
( A − λ I ) j v = 0 (A-\lambda I)^jv=0 (AλI)jv=0
  公式中v被成为广义特征向量generalized eigenvector,对于某个固定的v,上述公式中的 j j j的最小值是广义特征向量的下标index。毫无疑问,特征向量本身是一个j=1的广义特征向量。我们举个例子:
A = ( 2 1 1 − 2 − 1 − 2 1 1 2 ) λ = 1 A= \begin{pmatrix} 2 & 1 & 1\\ -2 & -1 & -2\\ 1 & 1 & 2 \end{pmatrix}\\ \lambda=1 A= 221111122 λ=1
  以 λ 1 = 2 \lambda_1=2 λ1=2为例子,求它的特征方程:
A = ( 3 1 1 − 2 0 − 2 1 1 3 ) A − 2 I = ( 1 1 1 − 2 − 2 − 2 1 1 1 ) ∼ ( 1 1 1 0 0 0 0 0 0 ) v = k 1 ( − 1 1 0 ) + k 2 ( − 1 0 1 ) ( A − 2 I ) 2 = ( 0 0 0 0 0 0 0 0 0 ) v = k 1 ( 1 0 0 ) + k 2 ( 0 1 0 ) + k 3 ( 0 0 1 ) A=\begin{pmatrix} 3 & 1 & 1\\ -2 & 0 & -2\\ 1 & 1 & 3 \end{pmatrix} \\ A-2I= \begin{pmatrix} 1 & 1 & 1\\ -2 & -2 & -2\\ 1 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}\\ v=k_1\begin{pmatrix}-1\\1\\0\end{pmatrix}+k_2\begin{pmatrix}-1\\0\\1\end{pmatrix}\\ (A-2I)^2= \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}\\ v=k_1\begin{pmatrix}1\\0\\0\end{pmatrix}+k_2\begin{pmatrix}0\\1\\0\end{pmatrix}+k_3\begin{pmatrix}0\\0\\1\end{pmatrix}\\ A= 321101123 A2I= 121121121 100100100 v=k1 110 +k2 101 (A2I)2= 000000000 v=k1 100 +k2 010 +k3 001
  所以j到2时,再乘什么都是0矩阵了,广义特征向量就是任意向量,再乘方就没意义了。

3 广义特征空间

  对于上述的规律,我们总在j增大到一定程度后,广义特征向量所在的空间是不会增大的。所以对某个特定的特征值定义了以下空间:
E j ( λ ) = { v ∣ ( A − λ I ) j v = 0 } E_j(\lambda)=\{v|(A-\lambda I)^jv=0\} Ej(λ)={v(AλI)jv=0}
  当 j j j无穷大时定义的空间 E ∞ ( λ ) E_\infty(\lambda) E(λ),被称为广义特征空间generalized eigenspace。但是也不要看到无穷就悲观,因为前面我们说了当j到一定程度时, E j ( λ ) E_j(\lambda) Ej(λ)空间不再扩大,这个时候就等于广义特征空间,这时候的 j j j被称为广义特征向量最大下标maximum index of
a generalized eigenvector of A associated to λ
,数学符号为 m a x max max- i n d ( λ ) ind(\lambda) ind(λ)。实际上 m a x max max- i n d ( λ ) ind(\lambda) ind(λ)等于该特征值最大约当块的行数。所以利用这个特性,可以快速确定矩阵的约当标准型。如下面的矩阵:
( 2 1 − 1 1 2 − 1 − 1 − 1 2 ) λ 1 = λ 2 = 1 , λ 3 = 4 \begin{pmatrix} 2 & 1 & -1\\ 1 & 2 & -1\\ -1 & -1 & 2 \end{pmatrix}\\ \lambda_1=\lambda_2=1,\lambda_3=4 211121112 λ1=λ2=1,λ3=4
  它的约当标准型有两种可能:
( 1 1 0 0 1 0 0 0 4 ) o r ( 1 0 0 0 1 0 0 0 4 ) \begin{pmatrix} 1 & 1 & 0\\ 0 & 1& 0\\ 0 & 0 & 4 \end{pmatrix}or \begin{pmatrix} 1 & 0 & 0\\ 0 & 1& 0\\ 0 & 0 & 4 \end{pmatrix} 100110004 or 100010004
  那么到底是哪一种?这个时候就需要用特征空间了,求出 m a x max max- i n d ( 1 ) ind(1) ind(1)。那只能拿特征方程计算下呗:
A − λ I = ( 1 1 − 1 1 1 − 1 − 1 − 1 1 ) ∼ ( 1 1 − 1 0 0 0 0 0 0 ) ( A − λ I ) 2 = ( 3 3 − 3 3 3 − 3 − 3 − 3 3 ) ∼ ( 1 1 − 1 0 0 0 0 0 0 ) A-\lambda I=\begin{pmatrix} 1 & 1 & -1\\ 1 & 1 & -1\\ -1 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -1\\ 0 & 0 & 0\\ 0 & 0 & 0\end{pmatrix}\\ (A-\lambda I)^2=\begin{pmatrix} 3 & 3 & -3\\ 3 & 3 & -3\\ -3 & -3 & 3 \end{pmatrix}\sim \begin{pmatrix} 1 & 1 & -1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}\\ AλI= 111111111 100100100 (AλI)2= 333333333 100100100
  特征方程的二次方并没有变成0矩阵,说明 m a x {max} max- i n d ( 1 ) = 1 {ind}(1)=1 ind(1)=1,所以约当标准型为:
( 1 0 0 0 1 0 0 0 4 ) \begin{pmatrix} 1 & 0 & 0\\ 0 & 1& 0\\ 0 & 0 & 4 \end{pmatrix} 100010004

  • 7
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值