泛函分析笔记(七) 连续线性算子和连续多重线性映射

赋范向量空间的连续线性算子

设X和Y是同一个域 K = R    o r    K = C \mathbb{K=R} ~~ or ~~ \mathbb{K=C} K=R  or  K=C 上的向量空间,0表示他们中的零向量。
映射 A : X → Y A:X\to Y A:XY 对所有 x , y ∈ X ,   α ∈ K x,y\in X , ~\alpha \in\mathbb{K} x,yX, αK
A ( x + y ) = A ( x ) + A ( y ) , A ( α x ) = α A A(x+y)=A(x)+A(y),A(\alpha x) = \alpha A A(x+y)=A(x)+A(y),A(αx)=αA
则称A为由X到Y的线性算子。
这个线性定义和之前学信号与系统里面的线性也是一模一样,叠加性齐次性啥的

如果 Y = K Y=\mathbb{K} Y=K 则称之为线性泛函或者线性型。一般简记A(x) 为 Ax

半线性 如果 K = C \mathbb{K=C} K=C 然后把那个乘法改成 A ( α x ) = α ‾ A ( x ) A(\alpha x) =\overline \alpha A(x) A(αx)=αA(x) ,则A是半线性的。

A的核 如果A是线性算子,称X的子集 K e r    A : = { x ∈ X ; A x = 0 } Ker ~~ A:=\{x\in X;Ax = 0\} Ker  A:={xX;Ax=0} 为A的核。
称X在A作用下的直接像A(X) 是A的值域,记作 Im A,有 I m    A : = A ( X ) = { y ∈ Y ; ∃ x ∈ X , y = A x } Im ~~A:= A(X) = \{y\in Y; \exists x \in X , y = Ax \} Im  A:=A(X)={yY;xX,y=Ax}
所以说A的核心就是X里能够在运算后得到0的元素的集合。

初等性质

  • 仅当A的核只有一个0元素的时候,A是单射(很容易理解嘛,不然不就很多个元素都映射到0了么,只能有一个的话,那必然是只有0元素了)
  • 如果线性算子是单射,那么他的逆映射是从Im A到X的线性算子(此处应有同理)

线性算子的特征值和特征子空间

如果 ∃ p ∈ X , p ≠ 0 , λ ∈ K , A p = λ p \exists p\in X,p\not ={0} , \lambda \in \mathbb{K} ,Ap = \lambda p pX,p=0,λK,Ap=λp
则λ是A的一个特征值,非零向量p是A相对于特征值λ的一个特征向量。
X的子空间 { p ∈ X ; A p = λ p } ≠ 0 \{p\in X;Ap=\lambda p\} \not ={0} {pX;Ap=λp}=0 是相对于特征值 λ 的特征子空间。

空间 L ( X ; Y ) , L ( X ) , X ∗ \mathcal{L}(X;Y),\mathcal{L}(X) ,X^* L(X;Y),L(X),X

设X和Y是同一个域 K \mathbb{K} K 上的两个赋范线性空间,则将域 K \mathbb{K} K 上由所有X到Y的连续线性算子组成的空间记作
L ( X ; Y )    o r    Y = X 时 L ( X ) \mathcal{L}(X;Y) ~~ or ~~ Y=X时 \mathcal{L}(X) L(X;Y)  or  Y=XL(X)

Y = K Y = \mathbb{K} Y=K 这特殊情况下,空间 X ′ : = L ( X ; K ) X':=\mathcal{L}(X;\mathbb{K}) X:=L(X;K) 是X的对偶空间。

连续多重线性映射

乘积空间 X 1 × X 2 × X 3 × ⋯ × X k ( k ≥ 2 , k ∈ Z ) X_1\times X_2\times X_3\times \dotsb \times X_k (k\ge 2,k\in Z) X1×X2×X3××Xk(k2,kZ) 是所有形如 ( x 1 , x 2 , x 3 , ⋯   , x k ) (x_1,x_2,x_3,\dotsb,x_k) (x1,x2,x3,,xk) 的元素的集合。没错它长得和俺熟悉的向量一毛一样,所以定义好加法和乘法这就是一个 K \mathbb{K} K 上的向量空间了。

我们称映射 A : X 1 × X 2 × X 3 × ⋯ × X k → Y A: X_1\times X_2\times X_3\times \dotsb \times X_k \to Y A:X1×X2×X3××XkY 是由 X 1 × X 2 × X 3 × ⋯ × X k X_1\times X_2\times X_3\times \dotsb \times X_k X1×X2×X3××Xk 到 Y 的多重映射或k线性映射。
当k=2或k=3时候也可以叫双线性或三线性。如果 Y = K Y = \mathbb{K} Y=K 也可以称为多重线性泛函或多线性型。

  • 这里有个关键点是这个多重映射和 X 1 × X 2 × X 3 × ⋯ × X k X_1\times X_2\times X_3\times \dotsb \times X_k X1×X2×X3××Xk 到 Y 的线性映射是不一样的(书上不提估计我就以为一样了。)
    区别可以由下面的例子看出
    以k=2距离
    线性映射应有 A ( ( x 1 , x 2 ) + ( y 1 , y 2 ) ) = A ( x 1 , x 2 ) + A ( y 1 , y 2 ) , A ( α ( x 1 , x 2 ) ) = α A ( x 1 , x 2 ) A((x_1,x_2)+(y_1,y_2)) = A(x_1,x_2)+A(y_1,y_2),A(\alpha(x_1,x_2))=\alpha A(x_1,x_2) A((x1,x2)+(y1,y2))=A(x1,x2)+A(y1,y2),A(α(x1,x2))=αA(x1,x2)

    而双线性映射满足的应该是
    A ( ( x 1 , x 2 ) + ( y 1 , y 2 ) ) = A ( x 1 , x 2 ) + A ( y 1 , y 2 ) + A ( x 1 , y 2 ) + A ( x 2 , y 1 ) , A ( α ( x 1 , x 2 ) ) = α 2 A ( x 1 , x 2 ) A((x_1,x_2)+(y_1,y_2)) = A(x_1,x_2)+A(y_1,y_2)+A(x_1,y_2) + A(x_2,y_1),A(\alpha(x_1,x_2))=\alpha^2 A(x_1,x_2) A((x1,x2)+(y1,y2))=A(x1,x2)+A(y1,y2)+A(x1,y2)+A(x2,y1),A(α(x1,x2))=α2A(x1,x2)
    区别还蛮大的。

  • 所有的 X 1 × X 2 × X 3 × ⋯ × X k X_1\times X_2\times X_3\times \dotsb \times X_k X1×X2×X3××Xk 到 Y 的多重线性映射组合也是 K \mathbb{K} K 上的一个向量空间。

对称和交错:

  • 置换:集合的置换是从集合映至自身的双射。比如 {1,2,3} 和 {2,1,3}

G k \mathcal{G}_k Gk 表示由集合 {1,2,3,4,…,k} 的置换全体组成的集合,那么 X × X × X × ⋯ × X X\times X\times X\times \dotsb \times X X×X×X××X 到 Y 的多重线性映射对一切 x l ∈ X l x_l\in X_l xlXl 和所有的 σ ∈ G k \sigma\in \mathcal{G}_k σGk
A ( x σ ( 1 ) , x σ ( 2 ) , ⋯   , x σ ( k ) ) = A ( x 1 , x 2 , ⋯   , x k ) A(x_{\sigma(1)},x_{\sigma(2)},\dotsb,x_{\sigma(k)}) = A(x_1,x_2,\dotsb,x_k) A(xσ(1),xσ(2),,xσ(k))=A(x1,x2,,xk)
那么A是对称的

从这个式子看,对称的意思应该就是A()括号里面的参数可以瞎换位置不影响结果嘛,在这些乘积的集合都是相同的X的情况下。

如果
A ( x σ ( 1 ) , x σ ( 2 ) , ⋯   , x σ ( k ) ) = ϵ ( σ ) A ( x 1 , x 2 , ⋯   , x k ) A(x_{\sigma(1)},x_{\sigma(2)},\dotsb,x_{\sigma(k)}) = \epsilon(\sigma)A(x_1,x_2,\dotsb,x_k) A(xσ(1),xσ(2),,xσ(k))=ϵ(σ)A(x1,x2,,xk)
其中 ϵ ( σ ) \epsilon(\sigma) ϵ(σ) σ \sigma σ 的符号(只能是±1),则称A是交错的。

这个和刚才的区别就是前面加了符号。也就是说交互位置只改变正负号。

这个特性和矩阵的行列式好像啊!!!!!!

所以书后也说,系数在 K \mathbb{K} K 上的 k*k的矩阵的行列式,作为矩阵列向量的函数,就是一个 X = K k X= \mathbb{K}^k X=Kk 的交错多重泛函的例子。

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

豆沙粽子好吃嘛!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值