1.7 周期矩阵

幂等矩阵在接口开发中表示重复调用无影响,而在矩阵运算中指矩阵乘其自身结果不变。周期矩阵是幂等矩阵的扩展,具有特定的周期性。例如,单位矩阵是幂等矩阵,且周期为1。文章还提到,周期矩阵的逆矩阵如果存在,也是周期矩阵,并给出了周期为2的矩阵示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

幂等矩阵

  幂等这个概念,在Java开发或其他语言的接口开发中很常见,在接口开发中的意思是重复调用接口,效果和只调用一次一样,这样可以避免重复调用接口产生数据错误。幂等矩阵Idempotent Matrix,是指一个矩阵乘以自己等于自己,再乘自己还是等于自己,无论乘多少次都是自己,这就和接口幂等是一个意思,无论多少次方和一次方是一样的。
  毫无疑问,单位矩阵就是这样的矩阵,再举个不是单位矩阵的例子:
( 2 − 3 − 5 − 1 4 5 1 − 3 − 4 ) × ( 2 − 3 − 5 − 1 4 5 1 − 3 − 4 ) = ( 2 − 3 − 5 − 1 4 5 1 − 3 − 4 ) \begin{pmatrix}2 & -3 & -5\\ -1 & 4 & 5\\ 1 & -3 & -4\\ \end{pmatrix} \times \begin{pmatrix}2 & -3 & -5\\ -1 & 4 & 5\\ 1 & -3 & -4\\ \end{pmatrix} = \begin{pmatrix}2 & -3 & -5\\ -1 & 4 & 5\\ 1 & -3 & -4\\ \end{pmatrix} 211343554 × 211343554 = 211343554
  幂等矩阵就是 A 2 = A A^2=A A2=A的一类特殊方阵,那么有没有 A k = A , k > 2 A^k=A,k>2 Ak=A,k>2的矩阵呢?这就引出了周期矩阵的概念。

周期矩阵

  周期矩阵肯定是存在的,幂等矩阵可以看作一类特殊的周期矩阵,也就是周期为1的矩阵。周期是幂减去1啊,因为如果三次方等于自己,那么中间就夹着一个矩阵,距离就是2,如下所示:
A , A 2 , A , A 2 , A , ⋯ A ,A^2,A,A^2,A,\cdots A,A2,A,A2,A,
  我举一个周期为2的矩阵作为例子:
A = ( 1 − 2 − 6 − 3 2 9 2 0 − 3 ) A 2 = ( − 5 − 6 − 6 9 10 9 − 4 − 4 − 3 ) A 3 = ( 1 − 2 − 6 − 3 2 9 2 0 − 3 ) = A A=\begin{pmatrix}1 & -2 & -6\\ -3 & 2 & 9\\ 2 & 0 & -3\\ \end{pmatrix}\\ A^2 = \begin{pmatrix}-5 & -6 & -6\\ 9 & 10 & 9\\ -4 & -4 & -3\\ \end{pmatrix}\\ A^3= \begin{pmatrix}1 & -2 & -6\\ -3 & 2 & 9\\ 2 & 0 & -3\\ \end{pmatrix}=A A= 132220693 A2= 5946104693 A3= 132220693 =A

周期矩阵的性质

  周期矩阵拥有以下性质,名词看不懂的,我都给了链接。

  1. 幂等矩阵的1阶迹等于它的秩;
  2. 幂等矩阵的特征值要么是0,要么是1;
  3. 除单位矩阵外的幂等矩阵,都是不可逆矩阵。
  4. 如果周期矩阵可逆,周期为 k k k,也就是, A k + 1 = A A^{k+1}=A Ak+1=A,那么 A k = I A^k=I Ak=I
  5. 如果周期矩阵可逆,那么它的逆矩阵也是周期矩阵。
  6. k × k k \times k k×k的循环矩阵是周期为 k k k的周期矩阵。
  7. 多项式 x k − x + 1 x^k-x+1 xkx+1的友矩阵是周期为 k k k的周期矩阵。
<think>好的,用户想查找在Proteus中进行矩阵键盘设计和仿真的方法。首先,我需要回忆一下Proteus的基本操作,特别是关于矩阵键盘的部分。用户提到的引用内容里,引用[2]和引用[3]提到了矩阵键盘的工作原理和独立式键盘的设计,这可能对回答有帮助。 首先,我应该解释矩阵键盘的结构,4x4矩阵通常由行和列组成,通过扫描行或列来检测按键。然后,结合Proteus的元件库,可能需要指导用户如何找到矩阵键盘元件,比如Matrix Keyboard,并正确连接电路。引用[2]中提到判断按键的方法,当某行置低电平后检测列的电平变化,这应该在仿真中如何实现呢? 接下来,用户可能需要一个具体的步骤,比如在Proteus中如何放置元件、连接线路,以及编写单片机代码进行扫描。引用[3]中的独立键盘设计案例可能和矩阵键盘有所不同,但检测电平的原理类似,可以借鉴。 然后需要考虑仿真部分,比如如何加载程序到单片机,设置断点或观察IO口状态,验证按键是否正确触发。可能还需要提到常见的错误,比如上拉电阻的使用,或者扫描延迟的问题。 用户可能需要示例电路图和代码片段,比如使用51单片机的C语言代码,配合Proteus的仿真。这里要确保代码逻辑正确,行扫描和列检测的顺序,以及消抖处理。引用[1]中提到的Proteus的优势,比如高效仿真,可以强调在仿真过程中如何利用这些优势。 另外,用户可能需要教程资源,比如推荐官方文档或视频教程,帮助他们更深入学习。同时,结合用户提供的引用内容,适当标注引用来源,比如引用[2]的步骤如何应用到仿真中。 最后,生成的相关问题需要围绕Proteus的矩阵键盘设计展开,比如元件选择、扫描方法、常见问题解决等,确保覆盖用户可能遇到的后续疑问。</think>### Proteus中矩阵键盘设计与仿真方法详解 #### 1. 设计原理与元件选取 4x4矩阵键盘由4行4列共16个按键组成,采用行扫描法或列扫描法检测按键状态。在Proteus中需使用以下元件: - `MATRIX-KEYPAD-4X4`(矩阵键盘) - 单片机(如AT89C51) - 上拉电阻(参考引用[3]的独立键盘设计原理) - 显示模块(如LCD1602用于反馈) #### 2. 电路搭建步骤 1. 创建新工程并添加元件 - 搜索`KEYPAD`找到矩阵键盘 - 连接行线(ROW1-ROW4)到单片机P1.0-P1.3 - 连接列线(COL1-COL4)到P1.4-P1.7 - 所有IO口配置10kΩ上拉电阻(确保高电平稳定性[^3]) 2. 扫描逻辑实现 ```c // 51单片机扫描代码示例 unsigned char KeyScan() { unsigned char key = 0xFF; P1 = 0x0F; // 行置低电平,列输入 if (P1 != 0x0F) { // 检测列变化 DelayMs(10); // 消抖 if (P1 != 0x0F) { switch(P1) { case 0x07: key = 0; break; // COL1 case 0x0B: key = 1; break; // COL2 // ...其他列检测 } // 行扫描定位具体按键 P1 = 0xF0; // 列置低电平 switch(P1) { case 0x70: key += 0; break; // ROW1 case 0xB0: key += 4; break; // ROW2 // ...其他行检测 } } } return key; } ``` #### 3. 仿真调试技巧 1. 使用**电压探针**观察行列电平变化 2. 在`Debug`菜单启用单片机程序调试 3. 设置虚拟终端显示扫描码(参考引用[2]的检测原理) #### 4. 关键参数配置 | 参数项 | 推荐值 | 说明 | |--------------|--------------|-----------------------| | 扫描周期 | 10-20ms | 兼顾响应速度与防抖动 | | 上拉电阻值 | 4.7kΩ-10kΩ | 保证电平稳定性 | | 按键弹起时间 | 100ms | 仿真模型默认参数 | #### 5. 典型应用案例 结合LCD显示模块实现密码输入系统: 1. 按键扫描获取字符 2. 通过I2C协议驱动LCD 3. 添加星号掩码显示功能 [^1]: Proteus的协同仿真功能可直接关联Keil工程,实现代码级调试(如引用[1]所述的高效仿真特性)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值