当
A
满秩时,方程
0 投影变换与投影矩阵
投影矩阵的求法:
(1)
M→M
:
P{L,M}[X|Y]=[X|O]⇒PL,M=[X|O][X|Y]−1
;
(2)
L⊥→L
:
PL=[X|O][X|Y]−1
=[X|O][[X|Y]H[X|Y]]−1[X|Y]H
=[X|O]⎡⎣⎢⎢⎢(XHX)−1OO(YHY)−1⎤⎦⎥⎥⎥⎡⎣⎢⎢⎢XHYH⎤⎦⎥⎥⎥
=X(XHX)−1XH
.
1 存在、性质、构造
若
A∈Cm×n
,则
A
的任意一种伪逆尺寸为
定义
Moore-Penrose 逆 A+ 的四个等价定义:
(1)定义一:Penrose 方程 (i)
AXA=A
;(ii)
XAX=X
;(iii)
(AX)H=AX
;(iv)
(XA)H=XA
;
(2)定义二:
AX=PR(A), XA=PR(X)
,其中
PL
是子空间
L
上的正交投影矩阵;
(3)定义三:
(4)定义四:
AXA=A, X=AHZAH
,其中
Z
是与
满足部分 Penrose 条件的广义逆及其构造:
(1)
A{i,j,⋯,l}
:满足 Penrose 方程中的
(i),(j),(k),(l)
方程称为
{i,j,⋯,l}
-逆,记为
A(i,j,⋯,l)
,全体记为
A{i,j,⋯,l}
;
(2)
A{1,2}
:设
Y,Z∈A{1}
,令
X=YAZ
,则
X∈A{1,2}
,也称为自反广义逆;
(3)
A{1,2,3}
:
Y=(AHA)(1)AH∈A{1,2,3}
;
(4)
A{1,2,4}
:
Z=AH(AAH)(1)∈A{1,2,4}
;
(5)
A{1,2,3,4}
:
A†=A(1,4)AA(1,3)
;
(6)
λ†
:当
λ≠0
时,
λ†=λ−1
,否则为 0。
定理
(1)定理一:对任意
A∈Cm×n
,
A+
存在且唯一;
(2)定理二:
A(1)
唯一的充要条件是
A
为非奇异矩阵;
(3)定理三:若
(4)定理四:对任意
A
,有
(5)推论一:若
A∈Cm×nn
(列满秩),则
A†=(AHA)−1AH
;若
A∈Cm×nm
(行满秩),则
A†=AH(AAH)−1
;
(6)推论二:若
α≠0
,则
α†=(αHα)−1αH
。
性质
{1} -逆的八条性质:
(1)
(A(1))H∈AH{1}
;
(2)
λ†A(1)∈(λA){1}
;
(3)若
S,T
非奇异,则
T−1A(1)S−1∈(SAT){1}
;
(4)
rankA(1)≥rankA
;
(5)
AA(1)
和
A(1)A
均为幂等矩阵且与
A
同秩;
(6)
(7)
A(1)A=In
的充要条件是
rankA=n
,
AA(1)=Im
的充要条件是
rankA=m
;
(8)
AB(AB)(1)A=A
的充要条件是
rank(AB)=rankA
,
B(AB)(1)AB=B
的充要条件是
rank(AB)=rankB
。
Moore Penrose 逆 A† 的六条性质:
(1)
rankA†=rankA
;
(2)
(A†)†=A
;
(3)
(AH)†=(A†)H
,
(AT)†=(A†)T
;
(4)
(AHA)†=A†(AH)†
,
(AAH)+=(AH)†A†
;
(5)
A†=(AHA)†AH=AH(AAH)†
;
(6)
R(A†)=R(AH)
,
N(A†)=N(AH)
。
证明
(1)证明定理一:[存在性]奇异值分解,并令
X=V⎡⎣⎢⎢⎢Σ−1OOO⎤⎦⎥⎥⎥UH
;[唯一性]用共轭转置和展开构造
AXA
以消除
X
,证
(2)证明定理二:把
x∈N(A)
加到
X
的任意一列上,或把
(3)证明定理三:
R(XA)⊂R(X)
,
rank(XA)=rankA=rankX
,因此
R(XA)=R(X)
,则存在
Y
使
(4)证明定理四:由
Ax=0
有
AHAx=0
,由
AHAx=0
有
xHAHAx=0
,于是
Ax=0
,即
N(A)=N(AHA)
;
(5)证明
A†
性质(6):
R(A†)=R(A†AA†)=R(AH(A†)AHA†)⊂R(AH)
,
N(A†)=N(A†AA†)=N(A†(A†)HAH)⊃N(AH)
。
构造
由 {1} -逆可以很容易构造出其他的广义逆。
(1)
Y,Z∈A{1}
,则
X=YAZ∈A{1,2}
;
(2)
Y=(AHA)(1)AH∈A{1,2,3}
;
(3)
Z=AH(AAH)(1)∈A{1,2,4}
;
(4)
A†=A(1,4)AA(1,3)
。
2 计算
{1} -逆
步骤:
(1)初等行变换:
[A|I]→r[B|Q]
,其中
B
为 Hermite 标准形,则
(2)置换矩阵:构造
P=[ej1,⋯,ejn]
,使
QAP=⎡⎣⎢⎢IrOKO⎤⎦⎥⎥
;
(3)计算
A{1}
:
X=P⎡⎣⎢⎢IrOOL⎤⎦⎥⎥Q
,其中
L∈C(n−r)×(m−r)
为任意矩阵。
{1,2} -逆
(1)方法一:求
{1}
-逆
X=P⎡⎣⎢⎢IrOOL⎤⎦⎥⎥Q
后,令
L=0
即得
A(2)
;
(2)方法二:设
Y,Z∈A{1}
,则
X=YAZ∈A{1,2}
;
(3)方法三:满秩分解,然后
G(i)F(1)∈A{i}, G(1)F(i)∈A{i}
。
{1,3} -逆
用公式 Y=(AHA)(1)AH∈A{1,2,3} 。
{1,4} -逆
用公式 Z=AH(AAH)(1)∈A{1,2,4} 。
Moore-Penrose 逆
(1)方法一:满秩分解
A=FG
,则
A†=G†F†=GH(GGH)−1(FHF)−1FH
;
(2)方法二:奇异值分解
A=UDVH=U1ΣVH1
,则
A†=V1Σ−1UH1
;
(3)方法三:用公式
A†=A(1,4)AA(1,3)
。
满秩分解与广义逆的关系
(1)
G(i)F(1)∈A{i} (i=1,2,4)
;
(2)
G(1)F(i)∈A{i} (i=1,2,3)
;
(3)
G(1)F†∈A{1,2,3}, G†F(1)∈A{1,2,4}
;
(4)
A†=G†F(1,3)=G1,4F†
;
(5)
A†=G†F†=GH(GGH)−1(FHF)−1FH=GH(FHAGH)−1FH
。
3 广义逆矩阵与线性方程组的求解
方程组 Ax=b 的解
先要判断相容性(即是否有解):① 用充要条件 AA(1)b=b 或者 ② 用 rankA=rank(A|b) 。
(1)相容-通解:
x=A(1)b+(I−A(1)A)y
;
(2)相容-极小范数解:
x=A(1,4)b
(唯一);
(3)矛盾-最小二乘解:
x=A(1,3)b
;
(4)矛盾-极小范数最小二乘解:
x=A†b
(唯一);
(5)矩阵方程-极小范数最小二乘解:
AXB=D
的极小范数最小二乘解为
X=A†DB†
。
相容时,(1)和(3)的解一致,(2)和(4)的解一致。
所以求解方程组的步骤为:① 判断相容性;② 求解相应的广义矩阵逆通式;③ x=A(i,⋯,l)b 。
广义逆通式
(1)
A{1}={A(1)+Z−A(1)AZAA(1) | Z∈Cn×m}
;
(2)
A{1,4}={A(1,4)+Z(I−AA(1,4)) | Z∈Cn×m}
;
(3)
A{1,3}={A(1,3)+(I−A(1,3)A)Z | Z∈Cn×m}
。
以上均可由下面的定理一推得。
定理
(1)定理一:
AXB=D
相容的充要条件是
AA(1)DB(1)B=D
,通解为
X=A(1)DB(1)+Y−A(1)AYBB(1)
;
(2)定理二:
Ax=b
相容的充要条件是
AA(1)b=b
,通解为
x=A(1)b+(I−A(1)A)y
;
(3)定理三:若对所有
b∈R(A)
,
x=Xb
都是其解,则
X∈A{1}
;
(4)定理四:若对所有
b∈R(A)
,
x=Xb
都是极小范数解,则
X∈A{1,4}
;
(5)定理五:若对所有
b∈Cm
,
x=Xb
都是最小二乘解,则
X∈A{1,3}
;
(6)定理六:若对所有
b∈Cm
,
x=Xb
都是极小范数最小二乘解,则
X=A†
;
(7)推论:
x
是
通解,往往是“特解 + 齐次方程组通解”的形式。
引理
(1)引理一:相容方程组的极小范数解唯一,且在
R(AH)
中;
(2)引理二:集合
A{1,4}
由
XA=A(1,4)A
的所有解
X
组成(
(2)引理二:集合
A{1,3}
由
AX=AA(1,3)
的所有解
X
组成(
证明
(1)证明定理一:
D=AXB=AA(1)AXBB(1)B=AA(1)DB(1)B
,反之
X=A(1)DB(1)
显然是解;
(2)证明定理三:令
b=ai∈R(A)
,则
x=Xai
是
Ax=b
的解,得
AXai=ai
,即
AXA=A
;
(3)证明定理五:需证 ①
∥Ax−b∥2=∥Ax−PR(A)b∥2+∥PR(A)b−b∥2
;② 极小值的条件是
Ax=PR(A)b
;③
AA(1,3)=PR(A)b
;
(4)证明定理六:由证明(3)得,最小二乘解是
Ax=PR(A)b=AA(1,3)b
的(一般)解,则极小范数解为
x=A(1,4)AA(1,3)b=A†b
;
(5)证明推论:由 ①
b=PR(A)b+(I−PR(A))b=PR(A)b+PN(AH)b
,② 最小二乘解为
Ax=PR(A)b
的解,可得,
Ax−b=−PN(AH)b∈N(AH)
,所以
AH(Ax−b)=0
;
(6)证明
PR(A)=AA(1,3)
:
R(AA(1,3))=R(A)
,
N(AA(1,3)=N((AA(1,3))H)=N((A(1,3))HAH)=N(AH)=Rperp(A)
,因此
AA(1,3)=PR(A)
。
理解
(1)最小二乘解,就是要让
b
在
(2)投影矩阵,有时间再研究一下。
主要题型
(1)计算广义逆
A(1),A(1,2),A(1,3),A(1,4),A†
;
(2)计算方程组的通解、极小范数解、最小二乘解、极小范数最小二乘解;
(3)利用
A†
的运算规律进行计算或证明;
(4)幂等矩阵与特征值相关计算或证明;
(5)借助奇异值分解、满秩分解、QR 分解相关计算或证明。