通透!斯坦福大学终于将过拟合&欠拟合 全面总结出来啦!!

核心点:过拟合&欠拟合,如何防止!

哈喽,我是沐雨学长!

在机器学习中,有一项很重要的概念,那就是:过拟合(Overfitting)和欠拟合(Underfitting)。

很长一段时间,和不少同学私信聊到过拟合和欠拟合的问题。尤其是对于初学者来说,这个有时候感觉很难把握。

过拟合和欠拟合,涉及到机器学习中常见的两种模型性能问题,分别表示模型在训练数据上表现得过于复杂或过于简单。

下面咱们先来简单聊聊关于过拟合和欠拟合的特征,以及防止性能问题的方法。

大家伙如果觉得近期文章还不错!欢迎大家点个赞、转个发~

有同学想要获取 PDF 文档,记得文末私信即可!

ok,咱们一起来学习一下~

特征

这里总结过拟合4个最主要的特征~

  1. 训练集表现良好:模型在训练数据上的准确率非常高,几乎完美。
  2. 测试集表现差:相比之下,模型在测试集或验证集上的表现要差得多。
  3. 泛化能力弱:模型对于新的数据缺乏适应性,泛化能力差。
  4. 学习曲线表现:在学习曲线上,训练误差持续降低,而验证误差降低到一定程度后开始增加。

防止过拟合有效方法

防止过拟合的方法很多,要根据不同的情况进行不同的操作,以下总结了11种方法。

相比于之前文中的5种方式,多增加了5种,都可以作为大家使用的方式~

  1. 数据增强:通过对训练数据进行变换,比如旋转、缩放、翻转等,可以增加数据的多样性,帮助模型学习到更一般的特征。
  2. 减少模型复杂度:选择更简单的模型或减少模型中的参数数量(例如,减少神经网络中的层数或每层的节点数)可以降低过拟合的风险。
  3. 正则化(Regularization):添加正则项(如L1或L2正则化)到损失函数中可以惩罚模型的复杂度,限制模型权重的大小,从而减少过拟合。
  4. 提前停止(Early Stopping):在训练过程中,一旦验证误差开始增加,即停止进一步训练,可以防止模型过度拟合训练数据。
  5. 交叉验证(Cross-Validation):使用交叉验证可以更好地估计模型在未见数据上的表现,并选择表现最好的模型参数。
  6. Dropout:在训练神经网络时,随机丢弃(即暂时移除)网络中的一些节点,可以防止网络中的节点同时共同适应训练数据。
  7. 集成学习(Ensemble Methods):结合多个模型的预测,如随机森林或梯度提升机,通常可以减少过拟合并提高模型的泛化能力。
  8. 限制参数的搜索空间:在进行模型选择和超参数调优时,限制参数的搜索空间可以避免选择过于复杂的模型。
  9. 数据集分割:合理分割数据集为训练集、验证集和测试集,确保模型不是简单地记住了特定数据集的特征。
  10. 噪声注入:在训练数据中添加噪声可以减少模型对训练样本的依赖,并增加其泛化能力。
  11. 特征选择:减少输入特征的数量,舍弃那些不相关或冗余的特征,可以简化模型并减少过拟合的风险。

大家在实验中,这些方法的应用和结合,可以在一定程度上避免过拟合,从而提高模型对新数据的泛化和预测能力。

特征

这里也是总结了4点,大家可以大概看下:

  1. 训练集表现不佳:模型在训练数据上的准确率低,无法得到一个好的拟合。
  2. 测试集表现同样不佳:模型在测试集上的表现也很差,因为它连训练数据都没有学习好。
  3. 泛化能力差:因为模型对训练数据的学习不足,所以对新数据的泛化能力也很差。
  4. 学习曲线表现:在学习曲线上,训练误差和验证误差都很高,且两者可能相差不大。

防止欠拟合的方法

同样是11种最常用的方法~

  1. 增加模型复杂度:选择更复杂的模型或增加模型中的参数数量(例如增加神经网络中的层数或每层的节点数)以便捕捉数据中更复杂的模式。
  2. 特征工程(Feature Engineering):通过创建更多的特征,例如通过组合、转换或多项式扩展现有特征,可以帮助模型学习到数据中的更多有用信息。
  3. 减少正则化:如果模型过于简单,可能需要减少正则化项的权重或完全去掉正则化,以允许模型的复杂度增加。
  4. 更长的训练时间:有时模型仅仅是因为没有训练足够久,因此增加训练迭代次数或者训练时间有助于模型更好地学习数据。
  5. 减少数据预处理:如果数据预处理过程过于简化,可能会丢失重要信息。确保数据处理不会导致有价值信息的丢失。
  6. 调整超参数:通过调整学习算法的超参数(如学习率、树的深度等),可以帮助模型更好地学习数据。
  7. 更多的数据:如果可用,使用更多的训练数据可以帮助模型更好地泛化到新数据上。
  8. 集成不同模型:有时将不同的模型组合起来,比如使用模型融合或堆叠(stacking),可以帮助提升整体的模型性能。
  9. 使用非线性模型:如果数据本身具有非线性关系而使用了线性模型,换用非线性模型可能会带来更好的拟合。
  10. 获取更多特征信息:在可能的情况下,收集更多相关特征,增加模型的输入信息。
  11. 模型选择:有时需要重新考虑所选模型的适用性,尝试不同的模型以找到更好的匹配。

在实验中,大家可以用起来~

实验设置

  • 任务:基于单一特征x,预测目标变量y。
  • 数据集:生成一个简单的数据集,包含噪声。
  • 模型:使用线性回归模型,先不带正则化(容易过拟合),后添加L2正则化(岭回归)对比效果。

实验说明

  1. 生成数据集。
  2. 使用高阶多项式特征对数据进行转换,使模型更复杂,易于出现过拟合。
  3. 训练两个模型:一个是普通的线性回归模型,另一个是加入L2正则化的线性回归模型(岭回归)。
  4. 可视化并比较模型在训练集上的拟合情况以及在测试集上的表现。

完整代码

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression, Ridge
from sklearn.metrics import mean_squared_error
# 生成数据集
np.random.seed(0)
x = np.linspace(-3, 3, 100)
y = x**2 + np.random.randn(100) * 2 + 3
X = x[:, np.newaxis] # 转换为二维数组,用于模型训练
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 创建多项式特征
poly = PolynomialFeatures(degree=10, include_bias=False)
X_poly_train = poly.fit_transform(X_train)
X_poly_test = poly.transform(X_test)
# 模型训练:线性回归
model_lr = LinearRegression()
model_lr.fit(X_poly_train, y_train)
# 模型训练:岭回归
model_ridge = Ridge(alpha=100)
model_ridge.fit(X_poly_train, y_train)
# 预测和评估
x_range = np.linspace(X.min(), X.max(), 100).reshape(-1, 1)
x_range_poly = poly.transform(x_range)
y_pred_lr = model_lr.predict(x_range_poly)
y_pred_ridge = model_ridge.predict(x_range_poly)
print("Linear Regression MSE:", mean_squared_error(y_test, model_lr.predict(X_poly_test)))
print("Ridge Regression MSE:", mean_squared_error(y_test, model_ridge.predict(X_poly_test)))
# 绘制图形
plt.scatter(X_train, y_train, color='gray', marker='o', label='Training data')
plt.scatter(X_test, y_test, color='gold', marker='x', label='Test data')
plt.plot(x_range, y_pred_lr, label='Linear Regression', color='red', linewidth=2)
plt.plot(x_range, y_pred_ridge, label='Ridge Regression', color='blue', linewidth=2)
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.title('Overfitting Example and Solution')
plt.grid(True)
plt.show()

过拟合的情况

很显然,大家可以看到。在未添加正则化的线性回归模型中(红色曲线),会看到模型尝试非常精确地通过每个训练数据点,导致在测试集上的表现(黄色点)较差,这就是典型的过拟合现象。

解决过拟合后的情况

引入L2正则化的岭回归模型(蓝色曲线)能够有效降低模型复杂度,虽然它不再尝试穿过所有训练数据点,但在测试集上的MSE(均方误差)有显著降低,显示出了更好的泛化能力。

实验设置

  • 任务:基于单一特征x,预测目标变量y。
  • 数据集:生成一个具有非线性关系的数据集。
  • 模型:首先使用简单的线性回归模型(可能导致欠拟合),然后使用多项式回归来改善欠拟合。

实验说明

  1. 生成具有非线性关系的数据集。
  2. 使用线性回归模型训练,观察其在复杂数据上的表现。
  3. 通过引入多项式特征并再次使用线性回归,提高模型复杂度,以解决欠拟合问题。
  4. 可视化比较两种情况下模型的表现。

完整代码

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
# 生成数据集
np.random.seed(42)
x = np.random.rand(100) * 10 - 5 # 生成-5到5之间的随机数
y = x**3 + np.random.randn(100) * 20 + 10 # 非线性关系加上噪声
X = x.reshape(-1, 1)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
# 线性回归模型(可能导致欠拟合)
model_linear = LinearRegression()
model_linear.fit(X_train, y_train)
# 多项式回归(解决欠拟合)
poly_features = PolynomialFeatures(degree=3) # 选择三阶多项式特征
X_poly_train =
poly_features.fit_transform(X_train)
X_poly_test = poly_features.transform(X_test)
model_poly = LinearRegression()
model_poly.fit(X_poly_train, y_train)
# 预测与评估
x_range = np.linspace(X.min(), X.max(), 100).reshape(-1, 1)
y_pred_linear = model_linear.predict(x_range)
y_pred_poly = model_poly.predict(poly_features.transform(x_range))
print("Linear Regression MSE:", mean_squared_error(y_test, model_linear.predict(X_test)))
print("Polynomial Regression MSE:", mean_squared_error(y_test, model_poly.predict(X_poly_test)))
# 绘制结果
plt.scatter(X_train, y_train, color='gray', marker='o', label='Training data')
plt.scatter(X_test, y_test, color='gold', marker='x', label='Test data')
plt.plot(x_range, y_pred_linear, label='Linear Regression', color='red', linewidth=2)
plt.plot(x_range, y_pred_poly, label='Polynomial Regression', color='blue', linewidth=2)
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.title('Underfitting Example and Solution')
plt.grid(True)
plt.show()
 

欠拟合的情况

在使用简单的线性回归模型中(红色曲线),由于模型复杂度不足以捕捉底层数据的非线性关系,导致在训练集和测试集上的表现都不理想,这就是典型的欠拟合现象。

解决欠拟合后的情况

通过引入多项式特征并应用线性回归模型(蓝色曲线),我们显著提高了模型的复杂度,使得模型能够更好地逼近具有非线性关系的真实数据。结果显示,多项式回归的MSE明显低于简单线性回归模型,有效地解决了欠拟合问题。

最后

喜欢本文的朋友可以收藏、点赞、转发起来!

需要本文PDF的同学,查看下方图片,发送1即可~

  • 22
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值