题目:
给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段。例如,给定数列 { 0.1, 0.2, 0.3, 0.4 },我们有 (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这 10 个片段。
给定正整数数列,求出全部片段包含的所有的数之和。如本例中 10 个片段总和是 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0。
输入格式:
输入第一行给出一个不超过 105 的正整数 N,表示数列中数的个数,第二行给出 N 个不超过 1.0 的正数,是数列中的数,其间以一个空格分隔。
输出格式:
在一行中输出该序列所有片段包含的数之和,精确到小数点后 2 位。
输入样例:
4
0.1 0.2 0.3 0.4
输出样例:
5.00
解析:
举个例子,如下图(当然题目中给出的数字都是不大于1的小数)
不妨算一下每一个数字出现过几次,再加起来即可
比如2,以2开头的片段有[2],[2, 3],[2,3,4],不难得出结论,以第i个数开头的片段数目为n-i+1(i从1开始);
再看看不以2开头的片段,有[1,2],[1,2,3],[1,2,3,4],无非就是在以2开头的片段的前面加上一个1;
那如果我们给出的例子是 0,1,2,3,4呢
那不以2开头的片段需要加上[0,1,2],[0,1,2,3],[0,1,2,3,4],也就是在2开头的片段前面加上0,1;
由此找到规律,不以i开头的包含i的片段数目 = i前面的数字个数 × 以i开头的片段数目;换算成符号就是(i-1)*(n-i+1);
这样我们就能分别算出每个数字出现的次数。用1出现的次数乘1 加上2出现的次数乘2 加上3出现的次数乘3 加上四出现的次数乘4,就是我们(1,2,3,4)这个数列的片段和。
代码:
#include<iostream>
#include<iomanip>
using namespace std;
#define int long long
signed main()
{
int n;
cin>>n;
long double ans = 0;//测试点2需要用到long double
for(int i=1;i<=n;i++)
{
double t;
cin>>t;
ans += ((n-i+1) + (i-1)*(n-i+1))*t;//t*包含t的片段的个数 -> t*(以t开头的片段个数 + 不以t开头的片段个数)
}
cout<<fixed<<setprecision(2)<<ans;
}
测试点二和测试点三
首先需要开longlong
测试点二需要开long double
double 会造成精度缺失