PAT乙级 1049 数列的片段和(带解析,带测试点2,测试点3的坑点)

题目:

给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段。例如,给定数列 { 0.1, 0.2, 0.3, 0.4 },我们有 (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这 10 个片段。

给定正整数数列,求出全部片段包含的所有的数之和。如本例中 10 个片段总和是 0.1 + 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0。

输入格式:

输入第一行给出一个不超过 105 的正整数 N,表示数列中数的个数,第二行给出 N 个不超过 1.0 的正数,是数列中的数,其间以一个空格分隔。

输出格式:

在一行中输出该序列所有片段包含的数之和,精确到小数点后 2 位。

输入样例:

4
0.1 0.2 0.3 0.4

输出样例:

5.00

解析:

举个例子,如下图(当然题目中给出的数字都是不大于1的小数)

不妨算一下每一个数字出现过几次,再加起来即可

比如2,以2开头的片段有[2],[2, 3],[2,3,4],不难得出结论,以第i个数开头的片段数目为n-i+1(i从1开始);

再看看不以2开头的片段,有[1,2],[1,2,3],[1,2,3,4],无非就是在以2开头的片段的前面加上一个1;

那如果我们给出的例子是 0,1,2,3,4呢

那不以2开头的片段需要加上[0,1,2],[0,1,2,3],[0,1,2,3,4],也就是在2开头的片段前面加上0,1;

由此找到规律,不以i开头的包含i的片段数目 = i前面的数字个数 × 以i开头的片段数目;换算成符号就是(i-1)*(n-i+1);

这样我们就能分别算出每个数字出现的次数。用1出现的次数乘1 加上2出现的次数乘2 加上3出现的次数乘3 加上四出现的次数乘4,就是我们(1,2,3,4)这个数列的片段和。


代码:

#include<iostream>
#include<iomanip>
using namespace std;
#define int long long
signed main()
{
	int n;
	cin>>n;
	long double ans = 0;//测试点2需要用到long double
	for(int i=1;i<=n;i++)
	{
		double t;
		cin>>t;
		ans += ((n-i+1) + (i-1)*(n-i+1))*t;//t*包含t的片段的个数 -> t*(以t开头的片段个数 + 不以t开头的片段个数) 
	}
	cout<<fixed<<setprecision(2)<<ans;
}

测试点二和测试点三

首先需要开longlong

测试点二需要开long double

double 会造成精度缺失

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

owooooow

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值