题目:
题目描述
一个特别的单行街道在每公里处有一个汽车站。顾客根据他们乘坐汽车的公里使来付费。例如下表就是一个费用的单子。没有一辆车子行驶超过10公里,一个顾客打算行驶n公里(1<=n<100),它可以通过无限次的换车来完成旅程。最后要求费用最少。
输入
第一行十个整数分别表示行走1到10公里的费用(<=500)。注意这些数并无实际的经济意义,即行驶10公里费用可能比行驶一公里少。第二行一个整数n表示,旅客的总路程数。
输出
仅一个整数表示最少费用。
样例输入 Copy
12 21 31 40 49 58 69 79 90 101
15
样例输出 Copy
147
解析:
比较明显的动态规划题,可以看成作业一跳台阶的变形。
他到第i公里,来的方法只能有十种可能:
1.上一步在i-1公里,坐车1公里下车
2.上一步在i-2公里,坐车2公里下车
......
10.上一步在i-10公里,坐车10公里下车
只要在这十种可能中取花费最小的就好了。
唯一需要注意的是,前10公里比较特殊,他可能只有5公里,那么坐6,7,8,9,10公里下车的可能性就没有了,只需要把这10公里单独领出来讨论就行。
代码:
#include<iostream>
#include<string.h>
using namespace std;
int dp[110];
int need[11];
int main()
{
for(int i=1;i<110;i++)
dp[i] = 1e6;
for(int i=1;i<=10;i++)//前10公里特殊处理
{
cin>>need[i];
for(int j=1;j<=i;j++)
dp[i] = min(dp[i],dp[i-j]+need[j]);
}
for(int i=11;i<=100;i++)
{
for(int j=1;j<=10;j++)
dp[i] = min(dp[i],dp[i-j]+need[j]);
}
int n;
cin>>n;
cout<<dp[n];
}