【WPS表格】从身份证号码提取各种信息,如出生日期、年龄、性别、户籍所在地

目录

提取出生日期 

计算年龄 

 性别 

 户籍所在地 


提取出生日期 

假设证号在B2单元格,是ABCDEF19951217abcd,出生年月的公式就是=MID(B2,7,8),提取B2的字符串,从第7位开始的8为数字

或者

 


计算年龄 

公式=2022-MID(B2,7,4)

其中【MID(B2,7,4)】:提取身份证的出生年份,用现在的年份减去出生日期,就能计算出年龄了

或者

如果今年还没过生日,需要知道目前的年龄,用今天的日期计算:

公式=DATEDIF(TEXT(MID(B2,7,8),"0-00-00"),TODAY(),"y")

或者


性别 

​​​​​​​


户籍所在地 

如果没有身份证地区代码表首先就要此表,如图

公式=VLOOKUP(VALUE(LEFT(B2,6)),身份证号前六位!A:B,2,0)

LEFT(B2,6) —— 提取身份证的前六位

VALUE(LEFT(B2,6)) —— 将前六位字符转为数字格式

然后再使用VLOOKUP函数,从代码表中查找A列和B列列数为2的相对应的数据

最后可填1或0,1为模糊查找,0为精确查找


### 提升基于深度神经网络的宝石分类模型准确率的方法 为了使基于深度神经网络的宝石分类模型达到0.8以上的准确度,可以从多个方面优化模型性能。以下是几个关键策略: #### 数据预处理与增强 高质量的数据集对于训练有效的机器学习模型至关重要。应确保用于训练的数据集具有足够的代表性,并尽可能覆盖所有可能遇到的情况。 - **数据清洗**:去除噪声和异常值,保证输入特征的质量。 - **图像标准化**:调整图片尺寸、颜色空间等属性的一致性[^1]。 - **数据扩充**:通过对现有样本应用旋转、缩放和平移等方式增加多样性,从而防止过拟合并改善泛化能力。 #### 架构设计的选择 选择合适的卷积神经网络(CNN)架构能够显著影响最终的结果。现代CNN结构如ResNet,VGG,Inception等已被证明非常适用于视觉识别任务,在宝石分类领域同样适用。 - 使用预先训练好的权重初始化新创建的层(迁移学习),这有助于加速收敛过程并且通常可以获得更好的表现。 #### 调整超参数设置 合理配置各项超参数也是提高精度的重要环节之一。特别是关于学习速率的学习计划尤为重要: - 初始阶段采用较高的学习速度让模型快速接近最优解;随着迭代次数增多逐渐降低该数值以稳定靠近全局最优点而不至于发散出去[^2]. #### 正则化技术的应用 引入适当形式的正则约束可有效抑制过拟合并促进良好推广特性的发展. - Dropout机制随机丢弃部分节点来模拟集成效应. - L2范数惩罚项控制权值规模不至于过大造成过度复杂. #### 验证方法改进 交叉验证可以帮助评估不同设定下系统的稳定性及其平均效能水平。同时利用混淆矩阵分析错误模式进而针对性地采取措施加以改正。 ```python from sklearn.model_selection import KFold kf = KFold(n_splits=5) for train_index, test_index in kf.split(X): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] # 训练模型... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值