如何在云端GPU服务器中部署DeepSeek-R1蒸馏模型(下)

在云端GPU服务器中部署DeepSeek-R1蒸馏模型文章的上篇内容中,我们在本文中介绍了如何配置和安装部署依赖项,在下篇中我们将继续利用Ollama部署DeepSeek,欢迎各位小伙伴们继续关注!

6. 部署Ollama服务器和Ollama Web UI

运行以下命令安装Ollama服务器并验证其可用性:

docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama --restart always ollama/ollama
curl localhost:11434

在Ollama服务器开启的情况下,运行以下命令从Ollama库中拉取DeepSeek-R1-Distill-Qwen-14B模型:

docker exec -it ollama ollama pull deepseek-r1:14b

最后,设置Ollama Web UI,使用户可以通过Web浏览器与DeepSeek-R1-Distill-Qwen-14B进行交互。

docker run -d -p 3000:8080 --add-host=host.docker.internal:host-gateway -v ollama-webui:/app/backend/data --name ollama-webui --restart always ghcr.io/ollama-webui/ollama-webui:main

7. 配置应用程序负载均衡器(ALB)以访问云端部署的DeepSeek-R1

在亚马逊云科技管理控制台,导航到EC2页面,在左侧导航栏选择“负载均衡器”(Load Balancers)。选择“应用负载均衡器”(Application Load Balancer,ALB)作为负载均衡类型,并点击“创建”(Create)。

使用以下规格配置ALB:

  • 方案(Scheme): Internet-facing
  • 负载均衡器IP地址类型(Load balancer IP address type): IPv4
  • 网络设置(Network Settings): 选择默认的VPC设置,并选择与EC2实例部署在相同可用区的选项
  • 安全组(Security Groups): 选择在EC2配置步骤中创建的安全组

创建ALB以访问DeepSeek EC2 (1/5)

在“监听器和路由”(Listeners and Routing)部分,使用默认的HTTP:80设置,并点击“创建目标组”(Create target group)。

创建ALB以访问DeepSeek EC2 (2/5)

指定“实例”(Instances)作为目标类型(Target Type),命名目标组(Target Group)为deepseek-tg,然后点击“下一步”(Next)。

创建ALB以访问DeepSeek EC2 (3/5)

注册deepseek-r1实例作为目标(Target),指定端口3000,然后点击“Include as pending below”,接着点击“创建目标组”(Create Target Group)。

创建ALB以访问DeepSeek EC2 (4/5)

最后返回应用负载均衡器创建页面,选择挂载deepseek-r1目标组(Target Group),然后向下滚动并点击“创建负载均衡器”(Create Load Balancer)。

创建ALB以访问DeepSeek EC2 (5/5)

8. 通过ALB DNS访问Ollama Web UI上的DeepSeek-R-1

在亚马逊云科技管理控制台,导航到EC2页面,在左侧导航栏选择“负载均衡器”(Load Balancers)。选择在前一步中创建的deepseek-alb,并获取其DNS名称。

获取ALB DNS

在浏览器中输入ALB的DNS地址,你将看到一个注册页面:

访问Ollama Web UI

使用自己选择的电子邮件和密码进行注册,即可开始探索托管在亚马逊云科技EC2上的DeepSeek-R1-Distill-Qwen-14B,结合Ollama和Ollama Web UI进行交互!

使用ALB DNS访问DeepSeek-R1:14B

9.结论

DeepSeek-R1和DeepSeek-R1 Distill模型因其强大的推理能力而倍受欢迎。虽然DeepSeek-R1 Distill模型可以在GPU或AI芯片上部署,以获得最佳的低延迟和高吞吐性能,但并非所有使用场景都需要这种性能水平。在某些场景下,将模型托管在CPU上可以获得更优的性价比。要了解如何在EC2上使用CPU部署DeepSeek-R1 Distill模型,大家可以使用Amazon Gravition4芯片进行部署。

### 如何在云环境中部署 DeepSeek-R1 为了成功地在云端部署 DeepSeek-R1,可以遵循一系列特定的操作流程来确保应用程序能够顺利运行。首先建立映像的过程可以通过命令 `$ gcloud builds submit --tag gcr.io/$PROJECT_ID/endpoint-espv2` 来完成[^1]。 对于 Docker 映像的推送操作,则需执行 `docker push YOUR_USERNAME/myfirstapp` 命令以上传构建好的应用至容器仓库[^2]。然而针对 DeepSeek-R1 的具体部署过程可能涉及更多细节配置: #### 准备工作环境 确保本地开发机器上安装并配置好了 Google Cloud SDK 和 Docker 工具链。这一步骤至关重要,因为后续所有的操作都将依赖于这些工具集所提供的功能支持。 #### 构建自定义镜像 创建适合 DeepSeek-R1 运行所需的 Dockerfile 文件,在其中指定基础镜像以及必要的软件包和库文件。通过此方式定制化生成的应用程序镜像更贴合实际需求。 ```Dockerfile FROM python:3.9-slim-buster WORKDIR /app COPY . . RUN pip install --no-cache-dir -r requirements.txt CMD ["python", "main.py"] ``` #### 测试与验证 利用本地计算机上的 Docker 环境测试刚刚制作出来的镜像是否正常运作。一旦确认无误之后再考虑将其推送到远程服务器端进行进一步处理。 #### 发布到云端平台 借助之前提到过的两条指令分别实现 CI/CD 流水线中的打包编译环节以及最终制品分发阶段的任务目标。值得注意的是这里应当替换掉示例代码里的占位符变量(如 PROJECT_ID 或者 YOUR_USERNAME),使之指向真实的项目资源路径。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值