学习Matplotlib, Numpy, Panadas 的自我记录。
目录概览
Matplotlib
Matplotlib Pyplot
使用 import 导入 pyplot 库,并设置一个别名 plt:
import matplotlib.pyplot as plt
plot()
syntax:
# 画单条线
plot([x], y, [fmt], *, data=None, **kwargs)
# 画多条线
plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs)
参数说明:
x, y:点或线的节点,x 为 x 轴数据,y 为 y 轴数据,数据可以列表或数组。
fmt:可选,定义基本格式(如颜色、标记和线条样式)。
**kwargs:可选,用在二维平面图上,设置指定属性,如标签,线的宽度等。
颜色字符:‘b’ 蓝色,‘m’ 洋红色,‘g’ 绿色,‘y’ 黄色,‘r’ 红色,‘k’ 黑色,‘w’ 白色,‘c’ 青绿色,‘#008000’ RGB 颜色符串。多条曲线不指定颜色时,会自动选择不同颜色。
线型参数:‘‐’ 实线,‘‐‐’ 破折线,‘‐.’ 点划线,‘:’ 虚线。
标记字符:‘.’ 点标记,‘,’ 像素标记(极小点),‘o’ 实心圈标记,‘v’ 倒三角标记,‘^’ 上三角标记,‘>’ 右三角标记,‘<’ 左三角标记…等等。
画单条线:
import matplotlib.pyplot as plt
import numpy as np
xpoints = np.array([0, 6])
ypoints = np.array([0, 100])
plt.plot(xpoints, ypoints)
plt.show()
画多条线:
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(0,4*np.pi,0.1) # start,stop,step
y = np.sin(x)
z = np.cos(x)
plt.plot(x,y,x,z)
plt.show()
Marker 标记
坐标自定义一些不一样的标记,可以使用 plot() 方法的 marker 参数来定义:
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([1,3,4,5,8,9,6,1,3,4,5,2,4])
plt.plot(ypoints, marker = 'o')
plt.show()
标记大小与颜色:
markersize,简写为 ms:定义标记的大小。
markerfacecolor,简写为 mfc:定义标记内部的颜色。
markeredgecolor,简写为 mec:定义标记边框的颜色。
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, marker = 'o', ms = 20, mec = '#4CAF50', mfc = '#4CAF50')
plt.show()
linestyle 自定义线的样式,包括线的类型、颜色和大小等
线的类型可以使用 linestyle 参数来定义,简写为 ls:
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, linestyle = 'dashed')
plt.show()
线的颜色可以使用 color 参数来定义,简写为 c:
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, c = 'SeaGreen')
plt.show()
线的宽度可以使用 linewidth 参数来定义,简写为 lw,值可以是浮点数
import matplotlib.pyplot as plt
import numpy as np
ypoints = np.array([6, 2, 13, 10])
plt.plot(ypoints, linewidth = '5.5')
plt.show()
label 轴标签和标题
使用 xlabel() 和 ylabel() 方法来设置 x 轴和 y 轴的标签
使用 title() 方法来设置标题
import numpy as np
import matplotlib.pyplot as plt
x = np.array([1, 2, 3, 4])
y = np.array([1, 4, 9, 16])
plt.plot(x, y)
plt.title("RUNOOB TEST TITLE")
plt.xlabel("x - label")
plt.ylabel("y - label")
plt.show()
grid 网格线
使用 pyplot 中的 grid() 方法来设置图表中的网格线
syntax:
matplotlib.pyplot.grid(b=None, which='major', axis='both', )
参数说明:
b:可选,默认为 None,可以设置布尔值,true 为显示网格线,false 为不显示,如果设置 **kwargs 参数,则值为 true。
which:可选,可选值有 ‘major’、‘minor’ 和 ‘both’,默认为 ‘major’,表示应用更改的网格线。
axis:可选,设置显示哪个方向的网格线,可以是取 ‘both’(默认),‘x’ 或 ‘y’,分别表示两个方向,x 轴方向或 y 轴方向。
**kwargs:可选,设置网格样式,可以是 color=‘r’, linestyle=‘-’ 和 linewidth=2,分别表示网格线的颜色,样式和宽度。
import numpy as np
import matplotlib.pyplot as plt
x = np.array([1, 2, 3, 4])
y = np.array([1, 4, 9, 16])
plt.title("RUNOOB grid() Test")
plt.xlabel("x - label")
plt.ylabel("y - label")
plt.plot(x, y)
plt.grid()
# plt.grid(color = 'r', linestyle = '--', linewidth = 0.5) 做装饰
plt.show()
legend
# Show legend
plt.plot(days, max_t, label="max")
plt.plot(days, min_t, label="min")
plt.plot(days, avg_t, label="average")
plt.legend(loc='best')
# plt.legend(loc='upper right',shadow=True,fontsize='large')
# plt.legend(loc='upper right', fontsize="large", shadow=True)
subplot() 绘制多图
使用 pyplot 中的 subplot() 和 subplots() 方法来绘制多个子图; subplot() 方法在绘图时需要指定位置,subplots() 方法可以一次生成多个,在调用时只需要调用生成对象的 ax 即可
syntax:
subplot(nrows, ncols, index, **kwargs)
subplot(pos, **kwargs)
subplot(**kwargs)
subplot(ax)
matplotlib.pyplot.subplots(nrows=1, ncols=1, *, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None, **fig_kw)
import matplotlib.pyplot as plt
import numpy as np
#plot 1:
xpoints = np.array([0, 6])
ypoints = np.array([0, 100])
plt.subplot(1, 2, 1) # 1 row, 2 columns, 1st subplot
plt.plot(xpoints,ypoints)
plt.title("plot 1")
#plot 2:
x = np.array([1, 2, 3, 4])
y = np.array([1, 4, 9, 16])
plt.subplot(1, 2, 2) # 1 row, 2 columns, 2nd subplot
plt.plot(x,y)
plt.title("plot 2")
plt.suptitle("RUNOOB subplot Test")
plt.show()
scatter 散点图
使用 pyplot 中的 scatter() 方法来绘制散点图:
matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, *, edgecolors=None, plotnonfinite=False, data=None, **kwargs)
import matplotlib.pyplot as plt
import numpy as np
x = np.array([1, 2, 3, 4, 5, 6, 7, 8])
y = np.array([1, 4, 9, 16, 7, 11, 23, 18])
# sizes = np.array([20,50,100,200,500,1000,60,90]) 设置图标大小
# colors = np.array(["red","green","black","orange","purple","beige","cyan","magenta"]) 自定义点的颜色
plt.scatter(x, y)
plt.show()
颜色条 Colormap
使用 plt.colorbar() 方法:
import matplotlib.pyplot as plt
import numpy as np
x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])
y = np.array([99,86,87,88,111,86,103,87,94,78,77,85,86])
colors = np.array([0, 10, 20, 30, 40, 45, 50, 55, 60, 70, 80, 90, 100])
plt.scatter(x, y, c=colors, cmap='viridis') # 换个颜色条参数, cmap 设置为 afmhot_r
plt.colorbar()
plt.show()
barchart 柱形图
使用 pyplot 中的 bar() 方法来绘制柱形图:
syntax:
matplotlib.pyplot.bar(x, height, width=0.8, bottom=None, *, align='center', data=None, **kwargs)
参数说明:
x:浮点型数组,柱形图的 x 轴数据。
height:浮点型数组,柱形图的高度。
width:浮点型数组,柱形图的宽度。
bottom:浮点型数组,底座的 y 坐标,默认 0。
align:柱形图与 x 坐标的对齐方式,‘center’ 以 x 位置为中心,这是默认值。 ‘edge’:将柱形图的左边缘与 x 位置对齐。要对齐右边缘的条形,可以传递负数的宽度值及 align=‘edge’。
**kwargs::其他参数。
import matplotlib.pyplot as plt
import numpy as np
x = np.array(['Runoob-1', 'Runoob-2', 'Runoob-3', 'Runoob-4'])
y = np.array([20, 14, 23, 17])
plt.bar(x, y, align='center', color='green', alpha=0.5)
plt.show()
Horizontal Bars
垂直方向的柱形图可以使用 barh() 方法来设置:
import matplotlib.pyplot as plt
import numpy as np
x = np.array(["Runoob-1", "Runoob-2", "Runoob-3", "Runoob-4"])
y = np.array([12, 22, 6, 18])
plt.barh(x, y, height = 0.1)
plt.show()
Multiple Bars
plt.bar(xpos-0.2,revenue, width=0.4, label="Revenue")
plt.bar(xpos+0.2,profit, width=0.4,label="Profit")
plt.xticks(xpos,company)
plt.ylabel("Revenue(Bln)")
plt.title('US Technology Stocks')
plt.legend()
Pie 饼图
使用 pyplot 中的 pie() 方法来绘制饼图:
syntax:
matplotlib.pyplot.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=0, radius=1, counterclock=True, wedgeprops=None, textprops=None, center=0, 0, frame=False, rotatelabels=False, *, normalize=None, data=None)[source]
import matplotlib.pyplot as plt
import numpy as np
y = np.array([35, 25, 25, 15])
plt.pie(y)
plt.show()
import matplotlib.pyplot as plt
import numpy as np
y = np.array([35, 25, 25, 15])
plt.pie(y,
labels=['A','B','C','D'], # 设置饼图标签
colors=["#d5695d", "#5d8ca8", "#65a479", "#a564c9"], # 设置饼图颜色
)
plt.title("RUNOOB Pie Test") # 设置标题
plt.show()
突出显示第二个扇形,并格式化输出百分比:
import matplotlib.pyplot as plt
import numpy as np
y = np.array([35, 25, 25, 15])
plt.pie(y,
labels=['A','B','C','D'],
colors=["#d5695d", "#5d8ca8", "#65a479", "#a564c9"],
explode=(0, 0.2, 0, 0), # 第二部分突出显示,值越大,距离中心越远
autopct='%.2f%%', # 输出百分比
)
plt.title("RUNOOB Pie Test")
plt.show()
histograms 直方图
在直方图中,X轴包含一个变量,Y轴将是该变量的频率:
plt.xlabel("Sugar Level")
plt.ylabel("Number Of Patients")
plt.title("Blood Sugar Chart")
plt.hist(blood_sugar, bins=[80,100,125,150], rwidth=0.95, color='g')
Multiple
plt.xlabel("Sugar Level")
plt.ylabel("Number Of Patients")
plt.title("Blood Sugar Chart")
blood_sugar_men = [113, 85, 90, 150, 149, 88, 93, 115, 135, 80, 77, 82, 129]
blood_sugar_women = [67, 98, 89, 120, 133, 150, 84, 69, 89, 79, 120, 112, 100]
plt.hist([blood_sugar_men,blood_sugar_women], bins=[80,100,125,150], rwidth=0.95, color=['green','orange'],label=['men','women'])
plt.legend() # 右上角的标签
Horizontal
横向,orientation=‘horizontal’:
plt.xlabel("Number Of Patients")
plt.ylabel("Sugar Level")
plt.title("Blood Sugar Chart")
plt.hist(blood_sugar, bins=[80,100,125,150], rwidth=0.95, orientation='horizontal') # 横向
Numpy
NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。
NumPy 数据类型
numpy 支持的数据类型比 Python 内置的类型要多很多,基本上可以和 C 语言的数据类型对应上,其中部分类型对应为 Python 内置的类型。比如bool, int, int16, int32, float16, float32, float64, complex。
NumPy 数组属性
NumPy 数组的维数称为秩(rank),秩就是轴的数量,即数组的维度,一维数组的秩为 1,二维数组的秩为 2,以此类推。
每一个线性的数组称为是一个轴(axis),也就是维度(dimensions)。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。
声明 axis:axis=0,表示沿着第 0 轴进行操作,即对每一列进行操作;axis=1,表示沿着第1轴进行操作,即对每一行进行操作。
ndarray.ndim
ndarray.ndim 用于返回数组的维数,等于rank
import numpy as np
a = np.arange(24)
print (a.ndim) # one d
b = a.reshape(2,4,3) # three d
print (b.ndim)
# return
1
3
ndarray.shape
ndarray.shape 表示数组的维度,返回一个元组,这个元组的长度就是维度的数目,即 ndim 属性(秩)。比如,一个二维数组,其维度表示"行数"和"列数"。
ndarray.shape 也可以用于调整数组大小。
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
a.shape = (3,2)
print (a)
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
b = a.reshape(3,2)
print (b)
# return
[[1, 2]
[3, 4]
[5, 6]]
创建数组
numpy.empty/ones/zeros(shape, dtype = float, order = ‘C’)
import numpy as np
# 默认为浮点数
x = np.zeros(5)
print(x)
# 设置类型为整数
y = np.zeros((5,), dtype = int)
print(y)
# 自定义类型
z = np.zeros((2,2), dtype = [('x', 'i4'), ('y', 'i4')])
print(z)
# return
[0. 0. 0. 0. 0.]
[0 0 0 0 0]
[[(0, 0) (0, 0)]
[(0, 0) (