ECareV2:面部情绪识别模型应用(1)——学生课堂行为

前言

ECareV2是温州大学学生团队开发的第二代面部情绪识别模型和微表情识别模型。在情绪分类准确率上达到 87% 的领先水平,并且采用原创的面部应变场分析算法,旨在取代光谱分析等高昂特质设备实现高性能的微表情分析。ECareV2模型在教育领域、罪犯审讯领域、情感疗愈领域均有应用,而本文主要讲解ECareV2模型在课堂场景下的学生课堂行为分析这一应用。

技术框架

历代模型架构

实测效果

我们对完全没训练过的测试集(素材来源于B站)进行测试:

ECareV2面部情绪识别模块
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值