体系化、深度而又清晰的介绍《世界模型(World Model)》。从基础概念 → 数学结构 → 模型架构(Dreamer、Muze、VLA 等)→ 训练机制 → 工程实现 → 具身智能中的关键作用 → 未来前沿方向。
1. 世界模型是什么?
一句话:世界模型是一个让智能体“在脑子里模拟世界”的模型。
更正式地说:
世界模型(World Model)是一类学习系统,它通过对环境进行建模,在内部构建一个可预测、可想象(imagination / rollout)、可规划的“虚拟世界”,使智能体不必依赖真实环境,也能进行预测、推理、规划与决策。
它是通往 AGI 和具身智能的核心技术之一。
人类也有“世界模型”:
你闭眼也能想象杯子在哪里;你能预测“把杯子推一下会滑下桌子”;你能想象未来动作的结果。
AI 亦然。
2. 为什么智能必须拥有“世界模型”?
世界模型解决三大问题:
✅ (1) 高成本 / 高风险交互
真实机器人反复试错非常慢,也可能损坏机器或带来危险。
世界模型允许:
-
在内部“脑内模拟”未来;
-
不在真实世界犯错;
-
大量生成训练数据。
✅ (2) 可泛化推理
如果AI只能看到当前帧,它不会理解“物体被挡住仍然存在”。
世界模型可以学习:
-
物体持久性
-
因果关系
-
长时预测
-
未来状态
✅ (3) 不完全可观测的问题
真实环境是 部分可观测(POMDP):摄像机看不到背后的物体。
世界模型可以:
-
隐变量(latent state)补全不可见信息
-
构建一个内部 belief state
3. 世界模型的数学结构(最核心)
世界模型通常包含三个模块:
(A) 表征模型(Representation Model)
把高维观察(图像、语言、触觉…)编码成隐变量
[
z_t = f_\theta(o_t)
]
实质:把复杂感知压成一个“状态向量”。
(B) 动态模型(Transition Model)
内部预测未来 latent state:
[
z_{t+1} = g_\phi(z_t, a_t)
]
它学习“世界的规律”,包括动力学、物体交互、物理约束等。
这是世界模型的灵魂。
(C) 解码器 / 生成器(Decoder, Observation Model)
从 latent 重建观测:
[
\hat{o}{t+1} = h\psi(z_{t+1})
]
这样智能体可以“在脑子里看画面”。
整体结构(变分世界模型 VAE-style)
通常使用神经隐变量模型 + 序列 VAE:
[
p(o_{1:T}, z_{1:T}) = \prod_t p(z_t|z_{t-1}, a_{t-1}), p(o_t|z_t)
]
训练目标是最大化 ELBO(变分下界)。
4. 世界模型通常如何训练?
✅ 自监督学习 (Self-Supervised)
不需要额外标签,机器人或智能体只需体验世界:
-
预测未来画面(video prediction)
-
重建当前隐变量
-
对比学习(contrastive)
-
预测奖励(可选)
✅ 举例:Dreamer 的训练核心
Dreamer 在 latent 空间学习环境动力学(RSSM):
-
encoder:图像 → latent -
transition:latent + action → next latent -
decoder:latent → 重建图像 -
reward head:latent → reward 预测 -
actor & critic:在 latent 空间做 RL 更新
它让 agent 在 latent 世界中想象数千个未来,只在真实环境执行很少步骤。
5. 世界模型的主要类型(2020–2025)
按功能划分:
(1) 纯预测型世界模型(Model-based RL)
代表:
-
PlaNet(2019)
-
Dreamer / DreamerV2 / DreamerV3(Google DeepMind)
-
TD-MPC2
-
MPC-based Models(iLQR, CEM)
能力:
-
预测未来状态
-
做长期规划
-
强调动力学模型的精确性
(2) 生成式大模型世界模型(AGI方向)
代表:
-
GENESIS
-
VideoGPT / VideoDiffusion
-
SORA (OpenAI)
-
Muze
-
Latent Diffusion World Models
能力:
-
生成未来视频
-
“构建可想象世界”
-
做长期场景模拟
这些更像“大脑里的电影生成器”。
(3) VLA(Vision-Language-Action)世界模型(具身智能方向)
代表:
-
RT-2(Google)
-
OpenAI VLA
-
PerAct / GR1 / SAYCan / QVQ
-
OpenVLA(2024)
能力:
-
用语言描述任务
-
用视觉感知世界
-
用动作控制机器人
它们内含世界模型结构,但更注重语言 → 世界 → 动作的一致性。
(4) 因果世界模型(Causal World Models)
逻辑:
-
世界不是“画面序列”,而是由物体组成
-
世界变化由因果规则决定(如物理、接触、重力)
代表:
-
C-SWM (Causal-Structured World Models)
-
ODE-based 或物理引擎增强模型
能力:
-
更强泛化
-
可以“理解”物体
-
预测未见情况
6. 世界模型在具身智能中的作用(核心)
具身智能 ≈ 语言(认知) + 身体(行动) + 环境(物理交互)
世界模型是这个系统的大脑。
✅ 作用 1:解决“需要大量真实试验”的问题
机器人试一次抓取,需要几秒 → 1万个实验需要 8小时–数天。
世界模型内部 rollout:
-
1秒可以 rollout 几千次未来
-
训练速度提升 1000×
-
风险成本几乎为零
✅ 作用 2:提供“因果、物理、物体持久性”的理解
世界模型学习:
-
物体在遮挡后仍存在(object permanence)
-
重力、摩擦、碰撞
-
可用性(affordance):杯子能装东西,门可以推开
这是通往 AGI 的关键能力。
✅ 作用 3:让语言真正“理解世界”
语言模型本身不懂物理,只懂文字关系。
世界模型提供:
-
语言 ↔ 物理世界的桥梁
-
动作序列的因果解释
-
高层策略与低层控制之间的结构
例如:“把红杯子放到桌子右边”
世界模型可在脑内模拟未来动作的结果。
✅ 作用 4:让机器人能“想象”
和人类一样,通过 imagination:
-
想象走过去会不会撞到桌子
-
想象抓取路径是否可行
-
想象最终状态是否与指令匹配
7. 世界模型的典型架构(高级)
✅ DreamerV3(2023)
目前 MBRL(基于模型的RL)最强之一。
结构模块:
-
RSSM(Recurrent State-Space Model)
-
截断对比学习
-
latent rollout
-
actor-critic 在 latent 做 RL
优势:
-
不需要强化学习特化
-
只靠自监督即可学到高质量动力学
-
在 Atari、控制任务超过 DQN/SAC 等传统方法
✅ MuZero / EfficientZero
由 DeepMind 开发,支持围棋、国际象棋、Atari。
不需要知道环境的规则,仍能学到最优策略。
结构:
-
表征模型 + 动态模型 + 预测头
-
MCTS 树搜索
是战略型世界模型。
✅ RT-2 & OpenVLA(2023–2024)
语言 + 视觉 + 行动统一模型(Vision-Language-Action)。
结构:
-
Transformer backbone
-
多模态 Token:图像patch + 语言token + 动作token
-
隐式世界模型(latent dynamics)
能力:
-
“推抽屉”“抓杯子”“分类+操作混合任务”
✅ SORA / VideoDiffusion 世界模型(2024–2025)
专注视频生成,未来可做具身智能仿真器。
-
预测几秒甚至数十秒的视频
-
包含隐式物理、物体交互
-
提供世界预测结构
未来具身智能会把它用作“通用虚拟环境”。
8. “世界模型最小实现”框架(可做项目)
用 PyTorch 构建一个最小 Dreamer 风格世界模型。
✅ latent 表征(Encoder)
class Encoder(nn.Module):
def __init__(self):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(3, 32, 4, 2),
nn.ReLU(),
nn.Conv2d(32, 64, 4, 2),
nn.ReLU(),
nn.Flatten()
)
self.fc = nn.Linear(1024, 64) # latent z
def forward(self, obs):
h = self.conv(obs / 255.0)
z = self.fc(h)
return z
✅ dynamics 模型
class Transition(nn.Module):
def __init__(self, z_dim=64, a_dim=6):
super().__init__()
self.fc = nn.Sequential(
nn.Linear(z_dim + a_dim, 128),
nn.ReLU(),
nn.Linear(128, z_dim)
)
def forward(self, z, a):
x = torch.cat([z, a], dim=-1)
return self.fc(x)
✅ decoder(预测下一帧)
class Decoder(nn.Module):
def __init__(self):
super().__init__()
self.fc = nn.Sequential(
nn.Linear(64, 1024),
nn.ReLU()
)
self.deconv = nn.Sequential(
nn.ConvTranspose2d(64, 32, 4, 2),
nn.ReLU(),
nn.ConvTranspose2d(32, 3, 4, 2),
nn.Sigmoid()
)
def forward(self, z):
h = self.fc(z)
h = h.view(-1, 64, 4, 4)
return self.deconv(h)
✅ rollout(在latent空间想象未来)
def imagine(encoder, transition, decoder, obs, actions):
z = encoder(obs)
frames = []
for a in actions:
z = transition(z, a)
frame = decoder(z)
frames.append(frame)
return frames
你可以让 agent 用这个模型做 planning 或 RL。
9. 世界模型的未来研究方向(2025–2030)
✅ 1. “统一世界模型”(Universal World Model)
融合:
-
视频生成
-
物理动力学
-
语言理解
-
多智能体交互
-
现实和模拟迁移
本质是“世界级抽象器”。
✅ 2. 具身智能 AGI 的核心模块
未来机器人 = 大模型大脑 + 世界模型模拟器:
-
语言指导
-
世界模型预测
-
真实行动执行
这是 OpenAI、Google、DeepMind 的主线方向。
✅ 3. 真实世界规模世界模型(Real-World Web Scale)
类似“训练一个理解地球物理、常识、因果的大模型”。
✅ 4. 连续长时预测(几分钟级)
当前只能做短时预测,长时稳定性不够。
✅ 5. 可解释世界模型(Causal + Symbolic)
把 latent 变成:
-
物体
-
属性
-
关系
-
因果
-
力学
1682

被折叠的 条评论
为什么被折叠?



