线性代数国内版——纯结论部分

基本介绍

国内的线性代数是偏数值计算型的,具有相当多的定理,推论,较为抽象证明过程详见

1.行列式

[1] 排列与逆序

基本概念

排列:由1、2、3 … n 组成的一个有序数组,称为一个n级排列,这n个数字可以组合形成 n! 个不同的n级排列

标准次序:n个不同的自然数,规定从小到大,依次排列,为标准排列

逆序:在一个排列中,如果一对数字,位于前面的数字大于位于后面的数字,则称这一对数字为一个逆序

逆序数:一个排列中逆序的总数,标准排列中逆序数为0。一个排列J1、J2、J3 … Jn的逆序数记为
τ ( J 1 、 J 2 、 J 3 . . . . . J n ) \tau(J_{1}、J_{2}、J_{3} ..... J_{n}) τJ1J2J3.....Jn

奇排列:逆序数为奇数的排列

偶排列:逆序数为偶数的排列

对换:把一个排列中某两个数字的位置对换

相邻对换:将两个相邻数字对换

定理及推论

定理一:对换会改变排列的奇偶性

推论1:奇排列变成标准排列,需要的对换次数必定为奇数;偶排列变成标准排列,需要的对换次数必定为偶数;

推论2:对于同一组数的所有n级排列中,奇偶排列各半,个数均为 n!/2 个

[2] 行列式与行列式的基本性质

基本概念

行列式:为了简化线性方程组解的书写(原来的书写为一个复杂的分式的形式),我们规定了一个新的运算规则,引入了行列式(行列式实际就是一个算术表达式的简写,在这个表达式中没有任何未知数的情况下,行列式就是一个数字),使用字母D表示

新的运算规则(即行列式的定义)

∣ A ∣ = ∑ ( − 1 ) τ ( i 1 、 i 2 、 i 3 . . . . . i n ) ∗ ( − 1 ) τ ( j 1 、 j 2 、 j 3 . . . . . j n ) ∗ ( a i 1 j 1 ∗ a i 2 j 2 ∗ . . . . ∗ a i n j n ) \begin{vmatrix} A \end{vmatrix} = \sum (-1)^{\smash{\tau(i_{1}、i_{2}、i_{3} ..... i_{n})}}*(-1)^{\smash{\tau(j_{1}、j_{2}、j_{3} ..... j_{n})}}*(a_{i_{1}j_{1}}*a_{i_{2}j_{2}}*....*a_{i_{n}j_{n}}) A =(1)τi1i2i3.....in)(1)τj1j2j3.....jn)(ai1j1ai2j2....ainjn)

性质

在这个运算规则下,我们可以得到一系列的性质,这些性质可以让我们对不同行列式的关系看得比较清晰

性质1:行列式与其转置行列式的值相同

性质2:互换行列式的两行(列),行列式变号

性质3:若行列式有两行(列)完全相同,则该行列式为0

性质4:行列式的某一行(列)中所有的元素都乘以同一个数k,等于用k乘以此行列式(简单来说就是某一行(列)的公因子可以提到行列式外面来)

性质5:若行列式中有一行(列)元素为0,则此行列式为0

性质6
∣ a b c 1 + c 2 d 1 + d 2 ∣ = ∣ a b c 1 d 1 ∣ + ∣ a b c 2 d 2 ∣ \begin{vmatrix}a & b \\ c_{1}+c_{2} & d_{1}+d_{2} \end{vmatrix}= \begin{vmatrix}a & b \\ c_{1} & d_{1} \end{vmatrix}+ \begin{vmatrix}a & b \\ c_{2} & d_{2} \end{vmatrix} ac1+c2bd1+d2 = ac1bd1 + ac2bd2
注意,一次只能拆一行(列)

性质7:某一行(列)的元素全部乘以某一个数k,再加到另一行(列)上,行列式不变

[3] 行列式的展开

基本概念

所谓行列式的展开,就是将一个行列式计算出来

余子式与代数余子式:在n阶行列式中,把元素 a i j a_{ij} aij 所在的第 i 行和第 j 列划去,留下来的元素依旧保持原来的相对位置不变,所构成的新的 n-1 阶行列式称为元素 a i j a_{ij} aij 的余子式,记为 M i j M_{ij} Mij ,而代数余子式 A i j A_{ij} Aij 仅仅比余子式多了一个代数符号 (-1)i+j 而已,更加一般的余子式与代数余子式的定义可见后面的拉普拉斯定理
由余子式与代数余子式的定义可知,余子式与代数余子式只与所选定元素的位置有关,和该元素自身的数值无关,即无论数值如何改变,只要该元素在该行列式中的相对位置不变,其对应的余子式与代数余子式就不会发生改变

求行列式的三种方法
1.定义法
∣ A ∣ = ∑ ( − 1 ) τ ( i 1 、 i 2 、 i 3 . . . . . i n ) ∗ ( − 1 ) τ ( j 1 、 j 2 、 j 3 . . . . . j n ) ∗ ( a i 1 j 1 ∗ a i 2 j 2 ∗ . . . . ∗ a i n j n ) \begin{vmatrix} A \end{vmatrix} = \sum (-1)^{\smash{\tau(i_{1}、i_{2}、i_{3} ..... i_{n})}}*(-1)^{\smash{\tau(j_{1}、j_{2}、j_{3} ..... j_{n})}}*(a_{i_{1}j_{1}}*a_{i_{2}j_{2}}*....*a_{i_{n}j_{n}}) A =(1)τi1i2i3.....in)(1)τj1j2j3.....jn)(ai1j1ai2j2....ainjn)

2.代数余子式法(降阶法)
由于行列式等于某一行(列)的元素分别乘以其对应的代数余子式,再相加,于是我们可以运用行列式性质先对行列式进行等价转化,变成某一行(列)只有一个非0元素的形式,然后针对该行(列),使用上面斜体字描述的方法,将行列式进行降阶,简化计算

3.化为上三角或者下三角的形式(指以主对角线分界的上三角或者下三角)
根据行列式的定义法,如果化为上三角或者下三角,那么 n! 个项只有主对角线上的所有元素相乘的那一项的值是不为0的,其余 n!-1 个项的结果必定全为0,故定义法中的行列式公式可化简为
∣ A ∣ = ∑ ( a i 1 i 1 ∗ a i 2 i 2 ∗ . . . . ∗ a i n i n ) \begin{vmatrix} A \end{vmatrix} = \sum (a_{i_{1}i_{1}}*a_{i_{2}i_{2}}*....*a_{i_{n}i_{n}}) A =(ai1i1ai2i2....ainin)

解行列式常见的几种题型以及对应求法
1.箭(爪)型行列式
将每一列的公因子提取出来,使得每一列的元素(除第一行的元素以外),全部为1,这时可以将除第一列以外的其他各列元素乘以-1,依次加到第一列上,使得第一列中除第一行的元素以外,全部为0,至此,整个行列式化为了上三角型行列式,可以计算行列式了

2.行(列)和相等行列式
解法(1):先把各列(行)的元素都加到第一列(行)上去,然后将第一列(行)的公因子提取出来,使得第一列(行)的元素全部为1,在将第一列(行)元素乘以一个数值【要自行根据具体题目判定】,加到其他各行上,大概率可以使得整个行列式化为了下三角型行列式,可以计算行列式了

解法(2):由降阶法可知,当某一行(列)只有一个非0元素的时候,这个行列式就等于该非0元素值乘以其代数余子式,现在我们转换思维,如果给出一个行列式,如何实现升阶的操作,一个简单的做法是在原来行列式的左边和上面加上一行一列,并且令最左上角新增元素的值为1,其他新增元素值任意【实际上,要自行根据具体题目判定】,实现升阶以后,观察行列式,进行等价变换,可以转化为箭(爪)型行列式

3.使用递推法求行列式
观察行列式,使用降阶法,得到一个与降阶前行列式元素分布相似的行列式,即可得到递推公式,根据公式多写出几项,总结规律,得到答案

4.山寨版对角型行列式(除了副对角线上的元素,其他全部为0):
和对角型行列式的求法一样,本质也是运用定义法,经过简单分析,可知公式中 -1 的指数,即逆序数的计算符合等差数列的求和公式,于是对于山寨版对角型行列式,具有公式
∣ A ∣ = ∑ ( − 1 ) n ( n − 1 ) / 2 ∗ ( a i 1 j n ∗ a i 2 j n − 1 ∗ . . . . ∗ a i n j 1 ) \begin{vmatrix} A \end{vmatrix} = \sum (-1)^{\smash{n(n-1)/2}}*(a_{i_{1}j_{n}}*a_{i_{2}j_{n-1}}*....*a_{i_{n}j_{1}}) A =(1)n(n1)/2(ai1jnai2jn1....ainj1)

5.范德蒙行列式(第一行(列)的元素全为1,之后的行(列)的元素全为第一行(列)的乘方):
由数学归纳法可以证明,对于一个n阶范德蒙行列式,具有公式
∏ 1 ≤ j ≤ i ≤ n ( x i − x j ) = ( x n − x 1 ) ( x n − x 2 ) . . . . ( x n − x n − 1 ) ( x n − 1 − x 1 ) . . . . ( x 3 − x 1 ) ( x 3 − x 2 ) ( x 2 − x 1 ) \prod_{\mathclap{1\le j\le i\le n}} (x_{i}-x_{j})=(x_{n}-x_{1})(x_{n}-x_{2}) .... (x_{n}-x_{n-1})(x_{n-1}-x_{1}) .... (x_{3}-x_{1})(x_{3}-x_{2})(x_{2}-x_{1}) 1jin(xixj)=(xnx1)(xnx2)....(xnxn1)(xn1x1)....(x3x1)(x3x2)(x2x1)
简单来说就是选中第二行(列),每一个元素依次与位于其左边的所有元素相减,可以得到多个减式,将这些减式全部相乘,即为n阶范德蒙行列式

由该公式可知:只要第二行(列)有两个元素值相等,范德蒙行列式为0

[4] 拉普拉斯定理

这里,我们给出余子式与代数余子式的一般定义

余子式与代数余子式:在一个 n 级行列式 D 中任意选定 k 行 k 列,位于这些行和列的交叉点上的 k2 个元素按照原来的相对位置组成一个 k 级行列式 M,称为行列式 D 的一个 k 级子式,在 D 中划去这 k 行 k 列以后,余下的元素按照原来的相对位置组成的 n-k 级行列式 M’,称为 k 级行列式 M 的余子式,若 k 级行列式 M 的各个元素在 n 级行列式 D 中的行列编号分类为 i 1 , i 2 , i 3 . . . . . i k i_{1},i_{2},i_{3} ..... i_{k} i1,i2,i3.....ik j 1 , j 2 , j 3 . . . . . j k j_{1},j_{2},j_{3} ..... j_{k} j1,j2,j3.....jk,则有 k 级行列式 M 的代数余子式 ( − 1 ) i 1 + i 2 + i 3 . . . . . i k + j 1 + j 2 + j 3 . . . . . j k ∗ M ′ (-1)^{\smash{i_{1}+i_{2}+i_{3} ..... i_{k}+j_{1}+j_{2}+j_{3} ..... j_{k}}}* M' (1)i1+i2+i3.....ik+j1+j2+j3.....jkM

拉普拉斯定理:设n阶行列式D中任意取定了 k 行(列),由这 k 行(列)元素组成的一切 k 级子式与它们对应代数余子式的乘积之和等于行列式 D

拉普拉斯定理与代数余子式法(降阶法):由拉普拉斯定理可知所谓的代数余子式法(降阶法),就是其取定1行(列)的特殊情况(即 k =1的情况)

拉普拉斯定理的用法:一般使用拉普拉斯定理求解行列式,往往要先运用前面提到的行列式性质先对行列式进行等价转化,使得这 k 行(列)中只有唯一确定的一个 非零 k 级子式的形式,然后针对这 k 行(列),使用拉普拉斯定理,将行列式进行降阶,化为该 k 级子式和对应的代数余子式的乘积,从而实现简化计算的目的

[5] 克莱姆法则

克莱姆法则:如果一个具有n个未知数,由n个线性方程组成的线性方程组的系数行列式不为0,则这个线性方程组具有唯一解,且每一个未知数的计算公式为
D i D \cfrac{D_{i}}{D} DDi

其中 D i D_{i} Di指的是把系数矩阵中的第 i 列元素依次替换为同一个方程中等式右边对应数值的新 n 阶矩阵的行列式

特殊地,对于一个齐次线性方程组来说,如果其系数行列式不为0,由上定理可推出,该方程组只有零解,如果这个齐次线性方程组已知具有非零解,由反证法可以推出,其系数行列式必定为0(后续有定理表明这些其实都互为充要条件)

2.矩阵

前面的行列式是为了化简线性方程组解的书写而产生的,而矩阵则是为了表达线性方程组而出现的,即矩阵可以表示一个线性方程组(通过两个矩阵相乘的形式)

[1] 矩阵的基本概念

同型:行数相等,列数也相等,两个矩阵相等的前提就是这两个矩阵必须"同型"

单位矩阵:只有主对角线上的元素非0,且元素值全部为1

数量矩阵:将单位矩阵乘以k倍得到的矩阵(注意矩阵数乘的概念)

对角矩阵:主对角线之外位置的元素值全部为0

对称矩阵:如果一个矩阵的转置依旧与原矩阵相等,我们就称其为对称矩阵

反对称矩阵:如果一个矩阵的转置为原矩阵乘以-1的结果,我们就称其为反对称矩阵,特别地,对于奇数阶的反对称矩阵,其行列式必定为0

任意一个矩阵都可以表示为一个对称矩阵和一个反对称矩阵之和

上面提到的都是方阵

行阶梯阵:一个矩阵的各个非零行(元素不全为0的行)的首非零元(该行的第一个元素值非零的元素)所在的列下标随着行下标的增大而严格递增,且元素全为零的行全部位于整个矩阵的最下方,一个矩阵满足这两个条件,我们就称其为行阶梯阵

行最简型阵:首先为一个行阶梯阵,其次满足各非零行的首非零元的元素值全为1,且首非零元所在列的其他行的元素值全为0,一个矩阵满足这两个条件,我们就称其为行最简型阵

[2] 矩阵的运算

矩阵的加法:
两个矩阵相加即为对应的元素相加

矩阵的数乘:
矩阵的数乘记为矩阵的每一个元素都乘以这个数

矩阵相乘:
两个矩阵相乘必须要满足前一个矩阵的列数等于后一个矩阵的行数
对于A、B两个矩阵的乘积AB,称"以A左乘B" 或 “以B右乘A”
乘积AB中第 i 行第 j 列的元素由A的第 i 行元素与B的第 j 列元素对应相乘,再相加得到

矩阵相乘不一定满足交换律,若对于A、B两个矩阵,有 AB = BA,则称A、B两个矩阵可交换

矩阵相乘满足结合律(可证明),这在一些证明和计算中极其有用

前面提到"矩阵为线性方程组的另一种表达形式",这里的矩阵乘法就是关键

对于矩阵乘法与行列式有公式
∣ A B ∣ = ∣ A ∣ ∣ B ∣ \begin{vmatrix} AB \end{vmatrix} = \begin{vmatrix} A \end{vmatrix}\begin{vmatrix} B \end{vmatrix} AB = A B

矩阵的转置:
将矩阵各个行放到与该行下标相等的列下标的位置上,即原矩阵的第 k 行放到新矩阵的第 k 列的位置上,这个新矩阵即为原矩阵的转置矩阵,这个构造转置矩阵的过程即为矩阵转置
A ⊤ B ⊤ = ( B A ) ⊤ A^{\top}B^{\top} =(BA)^{\top} AB=(BA)
A ⊤ + B ⊤ = ( A + B ) ⊤ A^{\top}+B^{\top} =(A+B)^{\top} A+B=(A+B)
A = A + A ⊤ 2 + A − A ⊤ 2 A = \cfrac{A +A^{\top}}{2}+\cfrac{A -A^{\top}}{2} A=2A+A+2AA

注意事项
两个矩阵相乘,交换律并不是绝对成立的(如果两个矩阵相乘,交换位置后结果不变,则称这两个矩阵"可交换")
两个矩阵相乘结果的乘方,并不一定会等于两个矩阵相对位置不变,各自进行乘方,再相乘的结果(只有在两个矩阵可交换的时候,是成立的)
两个矩阵相乘结果为一个零矩阵,这两个矩阵未必全部为零矩阵

矩阵的多项式:
将矩阵A替换原来多项式中的未知量X的时候,要注意把常数项都乘以一个单位阵,这样等式才会成立

[3] 分块矩阵

分块矩阵,顾名思义,就是将一个矩阵切分为不同部分,每一个部分又可以看成一个新矩阵,这样的一个被分块的矩阵就称为分块矩阵。分块矩阵在高阶矩阵的运算中起到了简化计算的作用

分块矩阵相乘:
分块矩阵的转置为将原矩阵各个分块都看成元素,进行两个普通矩阵相乘,即
∣ A 1 A 2 A 3 A 4 ∣ ∣ B 1 B 2 B 3 B 4 ∣ = ∣ A 1 B 1 + A 2 B 3 A 1 B 2 + A 2 B 4 A 3 B 1 + A 4 B 3 A 3 B 2 + A 4 B 4 ∣ \begin{vmatrix}A_{1} & A_{2} \\ A_{3} & A_{4} \end{vmatrix}\begin{vmatrix}B_{1} & B_{2} \\ B_{3} & B_{4} \end{vmatrix}= \begin{vmatrix}A_{1}B_{1}+A_{2}B_{3} & A_{1}B_{2}+A_{2}B_{4} \\ A_{3}B_{1}+A_{4}B_{3} & A_{3}B_{2}+A_{4}B_{4} \end{vmatrix} A1A3A2A4 B1B3B2B4 = A1B1+A2B3A3B1+A4B3A1B2+A2B4A3B2+A4B4

分块对角矩阵:为一个对角线包含较小矩阵分块的分块矩阵,特别地,对于两个分块对角矩阵相乘,结果依旧为一个分块对角矩阵,分块对角矩阵的行列式,即为其每一个分块的行列式相乘,这由拉普拉斯定理易得出

分块矩阵的转置:
分块矩阵的转置为先将原矩阵各个分块都看成元素,进行普通矩阵的转置,再将每一个分块进行转置,即
∣ A B C D ∣ = ∣ A ⊤ C ⊤ B ⊤ D ⊤ ∣ \begin{vmatrix}A & B \\ C & D \end{vmatrix}= \begin{vmatrix}A^{\top} & C^{\top} \\ B^{\top} & D^{\top} \end{vmatrix} ACBD = ABCD

[4] 方阵

由 n 阶方阵A的元素构成的行列式即为方阵 A 的行列式,常表示为
d e t ( A )或者 ∣ A ∣ det(A)或者 \begin{vmatrix} A \end{vmatrix} detA)或者 A ∣ A ∣ \begin{vmatrix} A \end{vmatrix} A =0,则称方阵A是奇异的(或退化的)
∣ A ∣ \begin{vmatrix} A \end{vmatrix} A !=0,则称方阵A是非奇异的(或非退化的)

[5] 可逆矩阵与伴随矩阵

可逆矩阵:对于一个方阵 A,若存在方阵 B,使得 AB = BA = E,则称 A 可逆,并称 B 为 A 的逆矩阵,记为 A-1,对于一个可逆矩阵,其逆矩阵唯一(实际上,可逆矩阵定义中的AB = BA = E可以使用AB = E或者BA = E代替,即如果左乘可以得到一个单位阵,则右乘必定也可以得到单位阵,后续会有相关定理)

从该可逆矩阵的定义中我们可以断定,可逆矩阵必定为一个方阵

山寨版的对角矩阵的逆矩阵:根据可逆矩阵的定义可知,山寨版的对角矩阵的逆矩阵就是将所有的元素都取倒数,然后取一个转置即可得

可逆矩阵的运算性质
(1)若 A 可逆,则 A-1 亦可逆,逆矩阵为 A
(2)若 A 可逆,数 k != 0,则 kA 亦可逆,逆矩阵为 (1/k)A-1
(3)若 A、B为同阶方阵,且均可逆,则 AB 亦可逆,逆矩阵为 B-1A-1
(4)若 A 可逆,则 AT 亦可逆,逆矩阵为 (A-1)T
(5)若 A 可逆,则 ∣ A − 1 ∣ \begin{vmatrix} A^{-1} \end{vmatrix} A1 = ∣ A ∣ − 1 \begin{vmatrix} A \end{vmatrix}^{-1} A 1
(6)若 A 可逆,则 Ak 亦可逆,逆矩阵为 (A-1)k

伴随矩阵:设 A i j A_{ij} Aij为方阵A中元素 a i j a_{ij} aij对应的代数余子式,则该方阵A对应的伴随矩阵为
A ∗ = ∣ A 11 A 21 . . . . . A n 1 A 12 A 22 . . . . . A n 2 . . . . . . . . . . . . . . . . . . . . A 1 n A 2 n . . . . . A n n ∣ A^{*}=\begin{vmatrix}A_{11} & A_{21} & ..... & A_{n1} \\ A_{12} & A_{22} & ..... & A_{n2} \\ ..... & ..... & ..... & ..... \\ A_{1n} & A_{2n} & ..... & A_{nn}\end{vmatrix} A= A11A12.....A1nA21A22.....A2n....................An1An2.....Ann
伴随矩阵的性质:对于一个方阵A和其对应的伴随矩阵A*,总有公式
A ∗ A = A A ∗ = ∣ A ∣ E A^{*}A=AA^{*}=\begin{vmatrix} A\end{vmatrix}E AA=AA= A E

∣ A ∣ {\begin{vmatrix} A\end{vmatrix}} A 不为零的情况下,根据伴随矩阵的性质可以推出这三个公式
∣ A ∗ ∣ = ∣ A ∣ n − 1 {\begin{vmatrix} A^*\end{vmatrix}}=\begin{vmatrix} A\end{vmatrix}^{n-1} A = A n1
A ∗ = ∣ A ∣ A − 1 A^*={\begin{vmatrix} A\end{vmatrix}} A^{-1} A= A A1
( A B ) ∗ = B ∗ A ∗ (AB)^*=B^*A^* (AB)=BA

二阶方阵的伴随矩阵:根据伴随矩阵的定义可知,二阶方阵的伴随矩阵可通过方阵主对角线元素对换位置,副对角线元素变换正负号得到

[6] 逆矩阵与初等变换

初等变换:
矩阵的以下变换称为矩阵的初等行(列)变换
(1)互换矩阵中的两行(两列),记作 r i r_{i} ri<——> r j r_{j} rj( c i c_{i} ci<——> c j c_{j} cj)
(2)用一个非零数 λ \lambda λ乘以矩阵的某一行(列),记作 λ r i \lambda r_{i} λri( λ c i \lambda c_{i} λci)
(3)将某一行(列)的 k 倍加到另一行(列)上,记作 r i + k r j r_{i}+kr_{j} ri+krj( c i + k c j c_{i}+kc_{j} ci+kcj)

注意:初等变换并不是将一个矩阵进行等效变换,而是将一个矩阵变成一个新矩阵的过程,所以,进行初等变换的时候,使用的符号为一个箭头,而不是一个等号。但是初等变换在线性方程组求解的时候是等效的,即一个矩阵进行了初等变换前后,对应的线性方程组的解是相同的,做初等变换可以简化求解的计算量

初等矩阵:单位矩阵经过一次初等变换后得到的矩阵,于是三种初等变换对应三种初等矩阵,其中,(1)对应的初等矩阵为E( i,j ),(2)对应的初等矩阵为E( i ( λ \lambda λ) ,(3)对应的初等矩阵为E( i,j (k) )

初等矩阵的性质:
(1)初等矩阵是可逆的(因为初等矩阵的行列式不为零),且逆矩阵依旧为初等矩阵,(并且通过互换行(列)得到的初等矩阵的逆矩阵为该初等矩阵自身)
(2)初等矩阵的转置依旧为一个初等矩阵

对于一个 m x n 矩阵 A 做一次初等行(列)变换,相当于在矩阵A的左边(右边)乘以对应的一个 m阶(n阶)初等矩阵

任意一个矩阵通过有限次初等变换,都可以变换为这个矩阵(该矩阵称为标准型)
∣ E r 0 0 0 ∣ \begin{vmatrix}E_{r} & 0 \\ 0 & 0 \end{vmatrix} Er000

任意一个矩阵也可以通过有限次初等变换,变换为一个行(列)最简型阵,而且一般题目中要求将一个矩阵变成一个标准型,都是先将其变换为行最简型阵,再通过一系列初等列变换,得到对应的标准型

矩阵等价:如果矩阵A可以用矩阵B经过一系列初等变换得到,则称矩阵A与矩阵B等价,记为A ≅ \cong B,对于任意两个等价 m x n 的矩阵,则必定存在可逆矩阵 P m × m P_{m \times m} Pm×m Q n × n Q_{n \times n} Qn×n使得B = PAQ(这里的P和Q实际就是一堆初等矩阵的乘积而已)

定理:方阵A可逆的充要条件是存在有限个初等矩阵 P 1 P_{1} P1, P 2 P_{2} P2,… P t P_{t} Pt,使得 A = P 1 P_{1} P1 P 2 P_{2} P2 P t P_{t} Pt

推论:方阵A可逆的充要条件是A的标准型为单位矩阵E

由上面的推论可以得到,一个可逆矩阵A经过有限次初等变换就可以变换为单位矩阵E,而我们知道,单位矩阵的向量是可以线性组合出所有同维空间中的向量的,所以可逆矩阵是可以线性组合出所有同维空间中的向量的,即所有同维空间中的向量都可以被可逆矩阵线性表示

逆矩阵的求法
1.根据定义,使用待定系数法:
把逆矩阵的每一个元素都用一个未知量代替,根据等式A-1A = E,可以得到一个线性方程组,求出各个未知量,从而得到逆矩阵

2.伴随矩阵法:
由伴随矩阵的公式可知可逆矩阵 A 的逆矩阵为 A ∗ ∣ A ∣ \cfrac{A^*}{\begin{vmatrix} A\end{vmatrix}} A A
并且,由于一个方阵必定具有伴随矩阵,于是一个方阵是否可逆,就取决于这个方阵的行列式是否为零(不为零,则为可逆矩阵;为零,就不是一个可逆矩阵)

3.初等变换法:
基本原理就是

A − 1 ( A , E ) = ( E , A − 1 ) A^{-1}(A,E)=(E,A^{-1}) A1(AE)=(EA1)

矩阵可逆的充要条件
解矩阵方程的时候,要先判断矩阵是否可逆

1.根据定义,存在方阵 B,使得 AB = BA = E
2.根据伴随矩阵公式,方阵 A 的行列式不为零
3.根据2可以推出,存在方阵 B,使得 AB = E 或者 BA = E
4.存在有限个初等矩阵 P 1 P_{1} P1, P 2 P_{2} P2,… P t P_{t} Pt,使得 A = P 1 P_{1} P1 P 2 P_{2} P2 P t P_{t} Pt
5.A与E等价,即A的标准型为E

[7] 矩阵的秩

子式:在一个 m x n 矩阵 A 中,任意选定 k 行 k 列,位于这些行和列的交点上 k 的 k 2 k^{\smash{2}} k2 个元素,按照原来的位置,组合而成的一个 k 阶行列式,就称为矩阵 A 的一个 k 阶子式,易知,一个 m x n 矩阵 A 的 k 阶子式共有 C m k C_{m}^{\smash{k}} Cmk C n k C_{n}^{\smash{k}} Cnk

秩:在一个 m x n 矩阵 A 中,如果有一个 r 阶子式的行列式不等于零,并且所有 r+1 阶子式(如果有的话)的行列式皆为零,则称这个 r 阶子式为 A 的最高阶非零子式,数 r 称为矩阵 A 的秩,记为 R(A),并规定零矩阵的秩为零

秩的性质
可逆矩阵的秩等于它的阶数,所以可逆矩阵又称为满秩矩阵
不可逆矩阵的秩小于它的阶数,所有不可逆矩阵又称为降秩矩阵
在一个矩阵进行初等变换前后,矩阵的秩不变

(1)0 ⩽ \leqslant R ( A m × n ) R(A_{m \times n}) R(Am×n) ⩽ \leqslant min{m,n}
(2) R ( A T ) R(A^T) R(AT)= R ( A ) R(A) R(A)
(3) A m × n A_{m \times n} Am×n ≅ \cong B m × n B_{m \times n} Bm×n<=> R ( A m × n ) R(A_{m \times n}) R(Am×n) = = = R ( B m × n ) R(B_{m \times n}) R(Bm×n)
(4)一个行阶梯阵的秩即为非零行的行数
(5)max{ R ( A ) R(A) R(A), R ( B ) R(B) R(B)} ⩽ \leqslant R ( A , B ) R(A,B) R(A,B) ⩽ \leqslant R ( A ) + R ( B ) R(A)+R(B) R(A)+R(B)
(6) R ( A + B ) R(A+B) R(A+B) ⩽ \leqslant R ( A ) + R ( B ) R(A)+R(B) R(A)+R(B)
(7) R ( A ) + R ( B ) − n R(A)+R(B)-n R(A)+R(B)n ⩽ \leqslant R ( A B ) R(AB) R(AB) ( n 为矩阵 A 的列数 ) (n为矩阵A的列数) (n为矩阵A的列数)
(8) R ( A ) + R ( B ) R(A)+R(B) R(A)+R(B) ⩽ \leqslant n n n ( 当 A B = 0 时 ) (当AB=0时) (AB=0)
(9) R ( A B ) R(AB) R(AB) ⩽ \leqslant min{ R ( A ) R(A) R(A), R ( B ) R(B) R(B)}
(10) R R R ( A C 0 B ) \begin{pmatrix} A & C \\ 0 & B\end{pmatrix} (A0CB) ⩾ \geqslant R ( A ) + R ( B ) R(A)+R(B) R(A)+R(B)
(11) R R R ( A 0 0 B ) \begin{pmatrix} A & 0 \\ 0 & B\end{pmatrix} (A00B) = = = R ( A ) + R ( B ) R(A)+R(B) R(A)+R(B)

定理:如果A为一个n阶方阵,则
当 R(A) = n 时,R( A ∗ A^* A) = n
当 R(A) = n - 1 时,R( A ∗ A^* A) = 1
当 R(A) < n - 1 时,R( A ∗ A^* A) = 0

3.向量空间

如果将矩阵中的每一行或者是每一列的元素都组合地看成一个向量的话,那么就会出现一个新世界,即向量空间(向量空间在国外版线性代数中为主线内容,但是在国内版线性代数中被严重弱化了)

[1] 向量的基本概念与运算性质

零向量:各个维度的分量全为零的向量称为零向量

负向量:设向量 α \alpha α=( a 1 a_{1} a1, a 2 a_{2} a2,… a n a_{n} an),则向量( − a 1 -a_{1} a1, − a 2 -a_{2} a2,… − a n -a_{n} an)称为向量 α \alpha α的负向量

向量组:若干个同维列(行)(所谓同维就是指向量的分量个数相同)向量所组成的一个集合称为一个向量组,向量组中的向量个数可以为无穷多个,比如平面上所有的向量构成的向量组,记为 R 2 R^2 R2,全体 n 维向量构成的向量组,记为 R n R^n Rn

线性组合:给定向量组A: α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn和任意一组实数 k 1 k_{1} k1, k 2 k_{2} k2,… k n k_{n} kn,则表达式 k 1 k_{1} k1 α 1 \alpha_{1} α1+ k 2 k_{2} k2 α 2 \alpha_{2} α2+… k n k_{n} kn α n \alpha_{n} αn称为向量组A的一个线性组合

线性表示:若向量 β \beta β可以表示为向量组 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn的一个线性组合,则称向量 β \beta β可以由向量组 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn线性表示。任意一个 n 维向量都可由n 维基本向量组线性表示
n 维基本向量组:
α 1 = ( 1 , 0 , . . . . 0 ) T α 2 = ( 0 , 1 , . . . . 0 ) T . . . . . . . α n = ( 0 , 0 , . . . . 1 ) T \begin{array}{cc} \alpha_{1}=(1,0,.... 0)^T \\ \alpha_{2}=(0,1,.... 0)^T \\ ....... \\ \alpha_{n}=(0,0,.... 1)^T \end{array} α1=10....0Tα2=01....0T.......αn=00....1T

[2] 向量组的线性相关性

所谓向量组的线性相关性就是讨论这个向量组是线性相关还是线性无关的

线性相关与线性无关:给定向量组A: α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn,如果存在不全为零的数 k 1 k_{1} k1, k 2 k_{2} k2,… k n k_{n} kn使得 k 1 k_{1} k1 α 1 \alpha_{1} α1+ k 2 k_{2} k2 α 2 \alpha_{2} α2+… k n k_{n} kn α n \alpha_{n} αn=0,则称向量组A是线性相关的,否则称它是线性无关的。如果一个向量组线性无关,有且仅有当 k 1 k_{1} k1, k 2 k_{2} k2,… k n k_{n} kn全部等于零时,才有 k 1 k_{1} k1 α 1 \alpha_{1} α1+ k 2 k_{2} k2 α 2 \alpha_{2} α2+… k n k_{n} kn α n \alpha_{n} αn=0成立

一个 n 维基本单位向量组是线性无关的

初等行变换不会改变矩阵列向量的线性关系

在一组线性相关的向量中,至少存在一个向量可以被其他向量线性表示,但是当一组向量线性相关的时候,并不能保证每一个向量都可以被其他向量线性表示

定理:设向量组 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn线性无关,而 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn, β \beta β线性相关,则 β \beta β必定可以由 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn线性表示且表示法唯一

定理:若 β \beta β能由 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn线性表示,则表示法唯一的充分必要条件为向量组 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn线性无关

向量组的线性相关性的性质
性质1: α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn线性相关的充要条件是 α 1 T \alpha_{1}^T α1T, α 2 T \alpha_{2}^T α2T,… α n T \alpha_{n}^T αnT线性相关

性质2:一个向量线性相关的充要条件是该向量为零向量;一个向量线性无关的充要条件是该向量为非零向量

性质3:两个向量线性相关的充要条件是这两个向量成比例

性质4:如果一个向量组的一部分向量构成的向量组线性相关,则这个向量组线性相关

性质5:如果一个向量组是线性无关的,那么该向量组中任取一部分向量构成的新的向量组还是线性无关的

性质6:含有零向量的向量组一定线性相关

性质7:若 n 维向量组线性相关,则这 n 维向量同时去掉对应部分的 r 个分量后,所得到的新的向量组依旧线性相关

性质8:若 n 维向量组线性无关,将各个向量同时添加 r 个分量后,所得到的新的向量组依旧线性无关

[3] 向量组线性相关性的判定定理

对于一个向量组要么线性相关,要么线性无关

向量组线性相关性的判定定理
(1)当n ⩾ \geqslant 2时,向量组 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn线性相关的充要条件是 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn中至少由一个向量可以由其他向量线性表示

(2)对于 m 个 n 维向量 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α m \alpha_{m} αm,记矩阵A =( α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α m \alpha_{m} αm),则有
α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α m \alpha_{m} αm线性相关的充要条件为该矩阵对应的齐次线性方程组AX=0具有非零解
α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α m \alpha_{m} αm线性无关的充要条件为该矩阵对应的齐次线性方程组AX=0只有零解

(3)对于 m 个 n 维向量 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α m \alpha_{m} αm,记矩阵A =( α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α m \alpha_{m} αm),则有
向量组 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α m \alpha_{m} αm线性无关的充要条件为R(A)= m
向量组 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α m \alpha_{m} αm线性相关的充要条件为R(A)< m

(4)对于 n 个 n 维列向量组 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn,记矩阵A =( α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn)则有
∣ A ∣ ≠ 0 \begin{vmatrix} A\end{vmatrix}\not =0 A =0的充要条件为 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn线性无关
α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn线性相关的充要条件为 ∣ A ∣ = 0 \begin{vmatrix} A\end{vmatrix} =0 A =0

(5)m 个 n 维向量组 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn的线性相关性可以分为以下几种情况:
当 m > n 时,该向量组必定线性相关
当 m = n 时, ∣ A ∣ ≠ 0 \begin{vmatrix} A\end{vmatrix}\not =0 A =0的充要条件为该向量组线性无关; ∣ A ∣ = 0 \begin{vmatrix} A\end{vmatrix} =0 A =0的充要条件为该向量组线性相关
当 m < n 时,该向量组线性无关的充要条件为R(A)= m;该向量组线性相关的充要条件为R(A)< m

题外定理:
已知向量组 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α s \alpha_{s} αs线性无关,并且( β 1 \beta_{1} β1, β 2 \beta_{2} β2,… β s \beta_{s} βs)=( α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α s \alpha_{s} αs)A,A为一个 s x s 矩阵,则 β 1 \beta_{1} β1, β 2 \beta_{2} β2,… β s \beta_{s} βs线性无关的充要条件为 ∣ A ∣ ≠ 0 \begin{vmatrix} A\end{vmatrix}\not =0 A =0

已知( β 1 \beta_{1} β1, β 2 \beta_{2} β2,… β s \beta_{s} βs)=( α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α s \alpha_{s} αs)A,A为一个 s x s 可逆矩阵,则向量组 β 1 \beta_{1} β1, β 2 \beta_{2} β2,… β s \beta_{s} βs的线性相关性和向量组 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α s \alpha_{s} αs的线性相关性相同

[4] 向量组的秩与极大无关组

向量组间的线性表示:当一个向量组A的每一个向量都可以由向量组B中的向量线性表示,则称向量组A可由向量组B线性表示

向量组间的等价:若两个向量组可以互相线性表示,则称两个向量组是等价的

两个向量个数相同,维数相同的向量组间的线性表示可以看作两个向量组进行初等变换可以得到另一个向量组,所以这样两个向量组的秩必定相同

定理:设 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α t \alpha_{t} αt β 1 \beta_{1} β1, β 2 \beta_{2} β2,… β s \beta_{s} βs为两个向量组,如果向量组 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α t \alpha_{t} αt可以由向量组 β 1 \beta_{1} β1, β 2 \beta_{2} β2,… β s \beta_{s} βs线性表示,并且 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α t \alpha_{t} αt线性无关,则t ⩽ \leqslant s

定理:设 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α t \alpha_{t} αt β 1 \beta_{1} β1, β 2 \beta_{2} β2,… β s \beta_{s} βs为两个向量组,如果两个向量组是等价的,并且两个向量组均线性无关,则s = t

极大线性无关组(简称极大无关组):取出向量组 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α t \alpha_{t} αt的部分组,如果这个部分组线性无关,并且原向量组的任意一个向量均可由这个部分向量组线性表示,则这个部分向量组为原向量组的一个极大无关组。一个向量组的极大无关组往往不唯一,一个向量组和其极大无关组是等价的

由极大无关组的定义可知,对于一个极大无关组,如果再添加一个向量进去,这个部分向量组就线性相关了,所以极大无关组中的向量个数即为原向量组中可以构成线性无关的向量组的最大向量个数

性质:一个向量组的任意两个极大无关组等价,且所含的向量个数相等

向量组的秩:一个向量组 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn的极大无关组所含向量个数称为该向量组的秩,记为R( α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn),并规定向量组中的向量全为零向量的向量组的秩为零(与规定零矩阵的秩为零遥相呼应)

性质:如果一个向量组的秩为r,则这个向量组任意r+1个向量(如果有的话)都线性相关

值得注意的是向量组的秩即为该向量组对应的矩阵的秩,二者是同一个值

矩阵的行秩:矩阵行向量组的秩
矩阵的列秩:矩阵列向量组的秩

由于向量组的秩即为该向量组对应的矩阵的秩,所以同一个矩阵的行秩和列秩必定相等(可以通过一个矩阵的转置前后秩不变来理解)

定理:设向量组A的秩为t,向量组B的秩为s,若向量组A能由向量组B线性表示,则t ⩽ \leqslant s

定理:等价的向量组具有相同的秩

定理:设向量组A: α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn的秩为 r 1 r_{1} r1,向量组B: β 1 \beta_{1} β1, β 2 \beta_{2} β2,… β n \beta_{n} βn的秩为 r 2 r_{2} r2,向量组C: α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn, β 1 \beta_{1} β1, β 2 \beta_{2} β2,… β n \beta_{n} βn的秩为 r 3 r_{3} r3,则max{ r 1 r_{1} r1, r 2 r_{2} r2} ⩽ \leqslant r 3 r_{3} r3 ⩽ \leqslant r 1 r_{1} r1+ r 2 r_{2} r2

4.线性方程组

[1] 线性方程组的基本概念

使用矩阵乘法可以表示一个线性方程组

增广矩阵 A ‾ \overline{A} A:即一个线性方程组的系数矩阵的右侧再加上 A x = β Ax=\beta Ax=β中的 β \beta β,就是一个增广矩阵

定理:对于线性方程组 A x = β Ax=\beta Ax=β,即
α 11 x 1 + α 12 x 2 + . . . . + α 1 n x n = b 1 α 21 x 1 + α 22 x 2 + . . . . + α 1 n x n = b 2 . . . . . . . α m 1 x 1 + α m 2 x 2 + . . . . + α m n x n = b m \begin{array}{cc} \alpha_{11}x_{1}+\alpha_{12}x_{2}+....+\alpha_{1n}x_{n}=b_{1} \\ \alpha_{21}x_{1}+\alpha_{22}x_{2}+....+\alpha_{1n}x_{n}=b_{2} \\ ....... \\ \alpha_{m1}x_{1}+\alpha_{m2}x_{2}+....+\alpha_{mn}x_{n}=b_{m} \end{array} α11x1+α12x2+....+α1nxn=b1α21x1+α22x2+....+α1nxn=b2.......αm1x1+αm2x2+....+αmnxn=bm
(1) A x = β Ax=\beta Ax=β有解的充要条件为 R(A) = R( A ‾ \overline{A} A),即系数矩阵与增广矩阵的秩相等
(2) A x = β Ax=\beta Ax=β有唯一解的充要条件为 R(A) = R( A ‾ \overline{A} A) = n,即系数矩阵与增广矩阵的秩相等,都等于未知数个数
(3) A x = β Ax=\beta Ax=β有无穷多解的充要条件为 R(A) = R( A ‾ \overline{A} A) < n,即系数矩阵与增广矩阵的秩相等,都小于未知数个数

定理:
A x = β Ax=\beta Ax=β无解的充要条件为向量 β \beta β不可由向量组 α 1 \alpha_{1} α1, α 2 \alpha_{2} α2,… α n \alpha_{n} αn线性表示
A x = β Ax=\beta Ax=β无解的充要条件为R(A) < R( A ‾ \overline{A} A)
A x = β Ax=\beta Ax=β无解的充要条件为R(A) +1 = R( A ‾ \overline{A} A)

A x = β Ax=\beta Ax=β无解的情况就是类似于线性代数国外版中提到的系数矩阵的所有三维向量都在同一个平面上,而向量b在另一个平面的投影(即向量b在另一个平面的分量)不为0,这种情况下就会导致无解,当然,这种情况下,系数矩阵不是一个逆矩阵

[2] 解线性方程组

解线性方程组时,比较方便的就是消元法
消元法具体的过程就是对一个线性方程组施加如下三种变换:
(1)互换两个方程的位置
(2)以非零常数k乘以某一方程
(3)把一个方程的倍数加到另一个方程上
这三种变换即为线性方程组的初等变换
这些变换可以将一个线性方程组等效变换为一个与其同解的线性方程组
为了简化计算,在进行线性方程组的初等变换时,往往将线性方程组化为同解的阶梯型方程组,特别是行最简型方程组后,再进行求解

设线性方程组 A x = β Ax=\beta Ax=β有解,即 R(A) = R( A ‾ \overline{A} A) 成立,并设两个矩阵秩为 r,同时将矩阵A通过初等行变换转化为一个行阶梯阵B
对于矩阵A的 r 与 列数 n 的情况做一个讨论:
当 r = n 时,矩阵A的列向量线性无关,又线性方程组 A x = β Ax=\beta Ax=β有解,于是解必定是唯一的
当 r < n 时,矩阵A的列向量线性相关,此时,可以将 r 个线性无关的列向量留在等号左边,其他的 n - r 个列向量移到等号右边,如果将这 n - r 个列向量中的 n - r 个未知量赋值,就可以得到一个新的线性方程组,这个线性方程只有 r 个未知数,系数矩阵只有 r 个线性无关的向量,如果对该新线性方程组进行同样的讨论,此时就又转化为上面的"当 r = n 时"的情况,即此时解是唯一的

自由未知量:由于在那 n - r 个列向量移到等号左边,并给对应的 n - r 个未知量赋值以后,留在等号左边的那 r 个未知量可以唯一确定,所以,我们将这 n - r 个未知量称为自由未知量

解线性方程组的过程
(1)写出增广矩阵 A ‾ \overline{A} A,对增广矩阵作初等行变换,化为行阶梯阵(这个过程实际上是同时将系数矩阵也化为了行阶梯阵)
(2)观察系数矩阵A和增广矩阵 A ‾ \overline{A} A的秩
如果系数矩阵A等于增广矩阵 A ‾ \overline{A} A的秩,至少说明有解
如果系数矩阵A等于增广矩阵 A ‾ \overline{A} A的秩,并且等于系数矩阵A的列向量个数,说明有唯一解
如果系数矩阵A等于增广矩阵 A ‾ \overline{A} A的秩,并且小于系数矩阵A的列向量个数,说明有无穷解
如果系数矩阵A小于增广矩阵 A ‾ \overline{A} A的秩,说明无解
(3)特别地,当有无穷多解的情况下,要继续对增广矩阵进行初等行变换,化为行最简型阵,最后取首非零元对应的未知量留在左边(简单来说,就是像上面提到的,将那 r 个线性无关列向量留在等号左边),将其他列向量移到等号右边,以这种形式写出解

[3] 齐次线性方程组解的结构

齐次方程组Ax = 0的解的性质:
两个解的和还是该齐次方程组的解
一个解的倍数还是该齐次方程组的解
多个解的线性组合还是该齐次方程组的解

齐次线性方程组的基础解系:对于齐次方程组Ax = 0的一组解,如果满足这些解向量的线性无关,并且齐次方程组Ax = 0的任意一个解向量都可以由这一组解向量线性表示,则称这一组解向量为齐次方程组Ax = 0的一个基础解系

根据基础解系的定义可知,这个基础解系就是齐次线性方程组所有解向量的一个极大无关组

定理:设A为一个 m x n 矩阵,R(A) = r < n,则齐次线性方程组Ax = 0具有基础解系(即基础解系中至少有一个向量),且一个基础解系中的向量个数必定为 n - r 个

根据上面这个定理,可知,齐次线性方程组Ax = 0的结构通解为基础解析 n - r 个向量的线性组合,即
x = c 1 x 1 + c 2 x 2 + . . . . . + c n − r x n − r x = c_{1}x_{1}+c_{2}x_{2}+.....+c_{n-r}x_{n-r} x=c1x1+c2x2+.....+cnrxnr
其中 c 1 , c 2 , . . . . . c n − r c_{1},c_{2},.....c_{n-r} c1,c2,.....cnr为任意常数

基础解系的判别:一个向量组如果其中的所有向量均为Ax = 0的解,并且线性无关,整个向量组中的向量个数为 n - r 个,则这个向量组必定为该齐次线性方程组的一个基础解系

[4] 非齐次线性方程组解的结构

非齐次线性方程组的导出组:非齐次线性方程组Ax = β \beta β对应的齐次线性方程组Ax = 0称为Ax = β \beta β的导出组

对于齐次线性方程组来说,齐次线性方程组的解的和依旧为解,解的倍数依旧为解,从而得出解的线性组合依旧为解。而对应非齐次线性方程组来说,两个解的和以及一个解的倍数一般不再是该非齐次线性方程组的解

性质1:设 x 1 x_{1} x1 x 2 x_{2} x2均为非齐次线性方程组 A x = β Ax=\beta Ax=β的两个解,则当 k 1 k_{1} k1+ k 2 k_{2} k2=1时, k 1 k_{1} k1 x 1 x_{1} x1+ k 2 k_{2} k2 x 2 x_{2} x2也必定为 A x = β Ax=\beta Ax=β的解

其实从性质1就可以知道,如果一个非齐次线性方程组具有两个不同的解,那么该线性方程组就会具有无穷多个解,因为 k 1 k_{1} k1 k 2 k_{2} k2的取法是无穷多个的(数字是连续的)

性质2:非齐次线性方程组 A x = β Ax=\beta Ax=β的两个解 x 1 x_{1} x1 x 2 x_{2} x2的差必定为导出组 A x = 0 Ax=0 Ax=0的解

性质3:非齐次线性方程组 A x = β Ax=\beta Ax=β的一个解与其导出组 A x = 0 Ax=0 Ax=0的一个解的和依旧为 A x = β Ax=\beta Ax=β的解

定理:设非齐次线性方程组 A x = β Ax=\beta Ax=β满足R(A) = A( A ‾ \overline{A} A) < n,即该非齐次线性方程组具有无穷多解,并设 ζ ∗ \zeta^* ζ A x = β Ax=\beta Ax=β的一个特解, η \eta η为导出组的通解,即 η = c 1 x 1 + c 2 x 2 + . . . . . + c n − r x n − r \eta = c_{1}x_{1}+c_{2}x_{2}+.....+c_{n-r}x_{n-r} η=c1x1+c2x2+.....+cnrxnr(其中的 c 1 , c 2 , . . . . . c n − r c_{1},c_{2},.....c_{n-r} c1,c2,.....cnr为任意常数, x 1 , x 2 . . . . . x n − r x_{1},x_{2}.....x_{n-r} x1,x2.....xnr为基础解系),则 A x = β Ax=\beta Ax=β的结构通解为
x = ζ ∗ + η = ζ ∗ + c 1 x 1 + c 2 x 2 + . . . . . + c n − r x n − r x = \zeta^*+\eta=\zeta^*+c_{1}x_{1}+c_{2}x_{2}+.....+c_{n-r}x_{n-r} x=ζ+η=ζ+c1x1+c2x2+.....+cnrxnr
即一个非齐次线性方程组 A x = β Ax=\beta Ax=β的通解可以表示为一个特解加上其导出组的通解的形式

推论:非齐次线性方程组 A x = β Ax=\beta Ax=β在有解的情况下,解唯一的充要条件为其导出组只有零解

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值