目录
定义
最大公约数(Greatest Common Divisor,简称 GCD),也称最大公因数,指两个或多个整数共有约数中最大的一个。
求最大公约数的方法
1.质因数分解法(唯一分解定理)
分别把所给数分解质因数,然后找出它们公有的质因数,并将这些公有的质因数相乘,所得的积就是这些数的最大公约数。
例如,求 18 和 24 的最大公约数。18 = 2 × 3 × 3,24 = 2 × 2 × 2 × 3,公有的质因数是 2 和 3,所以最大公约数是 2 × 3 = 6。
2.《九章算术》——更相减损术
这是我国古代《九章算术》中的方法。用较大数减去较小数,然后将差和较小数继续做减法,直到两数相等,此时这个相等的数就是最大公约数。
例如,求 27 和 9 的最大公约数。27 - 9 = 18,18 - 9 = 9,所以最大公约数是 9。
3.辗转相除法(欧几里得算法)
用较大数除以较小数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是 0 为止。此时的除数就是最大公约数。
例如,求 252 和 105 的最大公约数。252 ÷ 105 = 2... 42,105 ÷ 42 = 2... 21,42 ÷ 21 = 2... 0,所以最大公约数是 21。
int gcd(int a,int b){
return b?gcd(b,a%b):a;
}