Roboflow标注平台使用----小白都能看懂

一、浏览器进入roboflow官网.

进入地址:Roboflow: Give your software the power to see objects in images and video

二、开始注册

(1)进去后会有三个注册选项,根据自己本身条件来选择在。

(2)这里我推荐使用第三种,直接用QQ邮箱注册,无需验证码,输入即可完成,注册时间短。

三、创建工作站

注册完成之后会自动登录进入页面,系统会自动生成一个workspace(如果你不想自己新建工作站,而是加入别人的工作站进行标注,则可跳过这里),

(1)选择Academia 用于学习,填写工作站名称。

(2)填写你要邀请人的邮件,这一步可以将自己的团队人员加入到一个工作站。

如果你目前没有确定团队具体人员,可以不用邀请,直接跳过。将邀请放在分配数据那一步骤。(这里我选择跳过,方便后续在分配步骤邀请)

(3)选择社区版免费使用,点击创建。

四、创建项目

如果仅仅是协同标注数据,按照本文档步骤轻松学会,就选择Explore Solo,如果还有其他需求就选择Guided Tour。

选择完前者后,会弹出创建工程的会话框,根据需求选择:

(1)项目类型:默认选择Object Detection(Bounding Box)对象检测(边界框)

(2)检测名称:你要标注的对象名称(英文)

(3)项目名称:自定义不强加要求

(4)许可证:默认CC BY 4.0

五、上传图片

(1)点击select folder 选择你要上传的数据文件,这里用作示例本文上传了25张图标。

(2)点击Save and Continue 保存数据,如果数据量较大会很慢。

注:(一个工作站最多只能上传10000张图片,如果你的数据很多,为了上传时间快,建议在一个工作站里创建多个项目,每一个项目分到2000左右数据,上传速度就会比较快。这只是一种解决方案,后面我还会介绍另一种。)

六、分配数据

(1)上传完成之后,如果你在创建工作站时没有确定好团队人员,在这一步骤可以继续邀请。点击Invite Teammate 输入成员邮箱邀请成员,系统会自动分配数据,当然你也可以自己分配指定数据给队员,后面介绍。

(2)点击Assign Images 进行分配(如果数据量大也需要一点时间)。

七、标注数据

(1)介绍页面:

 

(2)开始标注,点击自己的模块进入,点击Start Annotating 开始标注。

(3)推荐三个标注快捷键:enter:保存;方向左右键:上一张或下一张。

(4)标注完成后保存到数据集(每个成员都要上传到数据集)。

注:(如果输入的标签在历史标签里没有,系统会自动添加,在下次需要用到相同标签时候,可以直接拿来用,在classes中包含了图片的所有标签,可以用来判断是否标重复或标错)

八、导出数据

(1)点击Generate 创建新版本,在不进行数据增强的前提下一路点击默认Continue 直到完成。

(2)若要进行预处理,点击Preprocessing中的Add Preprocessing Step,选择预处理类型即可。

(3)若要进行数据增强,选择Augmentation点击Add Augmentation Step,选择你要增强的方式,以及增强的数量和修改参数。

 

 

(4)生成版本后点击export 导出,选择需要的格式,以及保存方式。

到此完成所有标注工作。

注:(一个项目只能有一个数据集,可以有多个版本,每个版本的数据集数量取决于各个成员上传的数据)

### 如何在Roboflow平台使用模型 为了在Roboflow平台使用模型,用户需经历几个关键过程来确保顺利部署和应用。虽然提供的参考资料未直接涉及Roboflow的具体操作流程[^1],可以基于一般实践提供指导。 #### 创建账户并登录 访问Roboflow官方网站注册账号或使用现有凭证登录。 #### 导入数据集 通过上传本地文件、链接到云存储或其他支持的方式导入所需训练的数据集。这一步骤对于准备用于训练或测试的图像至关重要。 #### 数据预处理与增强 利用Roboflow内置工具对数据进行标注、清理以及执行多种类型的增广技术以提升模型泛化能力。此阶段有助于提高最终模型的表现力。 #### 训练自定义模型 选择合适的预训练模型作为基础,在此基础上继续训练适应特定应用场景的新版本。也可以完全从头开始构建新的神经网络架构来进行训练。 #### 部署与推理服务配置 完成训练后,可将模型导出至不同框架格式(如TensorFlow, PyTorch),或是直接托管于Roboflow云端环境供实时预测请求调用。此外,还可以生成API密钥以便程序集成时验证身份[^2]。 ```bash import qai_hub import qai_hub_models from utils import get_ai_hub_api_token ai_hub_api_token = get_ai_hub_api_token() !qai-hub configure --api_token $ai_hub_api_token ``` 上述代码片段展示了如何获取API令牌并与指定的服务端点建立连接,这对于自动化工作流中的认证环节非常重要。
评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值