纸牌游戏 -- 拉马车

本文介绍了一种基于纸牌游戏“拉马车”规则的编程问题,涉及A、B双方轮流出牌,赢牌者拿走相应牌点的牌。程序通过栈和数组实现牌的管理和判断,最终输出游戏结束时赢家的牌序。
摘要由CSDN通过智能技术生成

题目概述

题目描述
小的时候,你玩过纸牌游戏吗?
有一种叫做"拉马车”的游戏,规则很简单,却很吸引小朋友。
其规则简述如下:
假设参加游戏的小朋友是A和B,游戏开始的时候,他们得到的随机的纸牌序列如下:
A方:K,8,X,K, A,2, A,9,5, A]
B方:2,7,K,5,J,5,Q,6,K,4]
其中的“X 表示"10",我们忽略了纸牌的花色。从A方开始,A、B双方轮流出牌。
当轮到某一方出牌时,他从自己的纸牌队列的头部拿走一张,放到桌上,并且压在最上面一张纸牌上(如果有的话)

此例中,游戏过程:
A出K,B出2,A出8,B出7,A出X,此时桌上的序列为:
K,2,8,7, X
当轮到 B 出牌时,他的牌 K 与桌上的纸牌序列中的K相同,则把包括K在内的以及两个K 之间的纸牌都赢回来,放入自己牌的队尾。注意:为了操作方便,放入牌的顺序是与桌上的顺序相反的。
此时,A、B双方的手里牌为:
A方:[K, A, 2, A,9,5, A]
B方:[5,J,5,Q,6,K,4,K,X,7,8,2,K]赢牌的一方继续出牌。也就是 B 接着出 5,A 出 K,B出J,A出 A,B 出5,又赢牌了。此时桌上的序列为:

5,K,J,A,5
此时双方手里牌:
A方:[2,A,9,5,A]
B方:
[Q, 6,K,4, K, X,7,8,2,K,5,A,J,K,5]注意:更多的时候赢牌的一方并不能把桌上的牌都赢走,而是拿走相同牌点及其中间的部分。但无论如何,都是赢牌的一方继续出牌,有的时候刚一出牌又赢了,也是允许的。
当某一方出掉手里最后一张牌,但无法从桌面上赢取牌时,游戏立即结束。
对于本例的初始手牌情况下,最后 A 会输掉,而“B最后的手里牌为:
9K2A62KAX58K57KJ5

~本题的任务就是已知双方初始牌序,计算游戏结束时,赢的一方手里的牌序。当游戏无法结束时,输出-1。
输入描述
输入为2行,2个串,分别表示A、B双方初始手里的牌序列。我们约定,输入的串的长度不超过30。2J9A7QA6Q6889977
输出描述
输出为1行,1个串,表示 A 先出牌,最后赢的一方手里的牌序。
输入输出样例
示例
输入

96J5A898QA
6278A70973
输出
2J9A70A606889977
运行限制
。最大运行时间:1s
。最大运行内存: 256M

//这是对部分代码进行注释的部分,帮助大家理解
#include<bits/stdc++.h>
using namespace std;
queue<char>a,b;//用两个队列分别记录A,B 
stack<char>s;//用一个栈来积累A,B出的牌
string s1,s2;//使用两个字符串记录A,B
int check[100];//使用数组check[100] 来对栈中的牌进行标记,依次达到可以对对消的效果
int order=1;//这里的order=1,表明是A先出牌,若order=2,则说明是B先出牌 

int main(){
	cin>>s1>>s2;
	//对A,B两个数列进行入队操作
	for(int i=0;i<s1.length();i++){
		a.push(s1[i]);
	}
	for(int i=0;i<s2.length();i++){
		b.push(s2[i]);
	} 
	while(!a.empty()&&!b.empty()){//循环判定条件为当a,b皆为非空,只有这样的情况,才能使之一致出牌 
		if(order==1)//order=1说明是A先出牌 
		{
				s.push(a.front());//将队列A的首部入栈
				a.pop();//首部入栈之后,则将首部出队
				if(check[s.top()])//这里注意,因为我先从A出队一个元素,使之入栈,故如果从S入栈的这个元素,
				//它在数组check[100]里面对应顺序的元素值与之前栈中积累的某个元素对应位次的数组中的值对应相等,这就相当于可以达到消除的条件了 
				{
					order=1;
					char tmp = s.top();//使用tmp将栈顶位置的元素值先存储
					a.push(s.top());//使之入队,是栈顶位置的元素入队,因为达到了消除的条件,之所以使用tmp将栈顶位置的元素先记录,是因为最后还要将与栈顶元素相等的元素入队
					s.pop();
					while(s.top()!=tmp) 
					{
						a.push(s.top());
						check(s.top)=0;//在出队之前,将这个位次的元素值设置为0 
						s.pop();
					}
					a.push(tmp);//之前登记的作用起到了 
					check(tmp)=0;//将栈顶位置的元素值也设置为0 
					s.pop();
				 } 
				 else
				 {
				 	order=2;
					 check[s.top()]=1; 
				  } 
		 } 
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值