智能控制是在无人干预的情况下,自主完成系统预设控制任务的一种新型技术。它的产生使系统的控制方式,从普通的自动控制发展为更高级的智能控制方式,是具有智能信息处理、智能信息反馈和智能控制决策的控制方式,智能控制使得控制对象模型从确定发展到不确定。使控制系统的输入输出设备与外界环境有了更加便利的信息交换途径,使控制系统的控制任务,从单一任务变为更加复杂的控制任务,使普通自动控制系统难以解决的非线性系统控制问题有了更加理想的解决方式,智能控制使自动控制系统具有了自适应,自组织,自学习和自协调的能力。智能控制代表了控制理论的发展趋势,能有效地处理复杂的控制问题。
智能控制是控制理论发展的高级阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制问题。智能控制研究对象的主要特点是具有不确定性的数学模型、高度的非线性和复杂的任务要求。智能控制以控制理论、计算机科学、人工智能、运筹学等学科为基础,扩展了相关的理论和技术,其中应用较多的有模糊逻辑、神经网络、专家系统、遗传算法等理论,以及自适应控制、自组织控制和自学习控制等技术。
2.2 人工智能控制技术的主要方法
2.2.1 模糊控制
模糊控制是以模糊集合理论、模糊语言变量和模糊逻辑推理为理论基础,以先验知识和专家经验作为控制规则,用机器从行为上模仿人的模糊推理和决策过程的一种智能控制方法。其基本思想是模拟人对系统的控制,首先将操作人员或专家经验编成模糊规则,然后将来自传感器的实时信号模糊化,将模糊化后的信号作为模糊规则的输入,完成模糊推理,将推理后得到的输出量加到执行器上,实现系统控制。
模糊系统具有对不同问题分析的功能,通过对问题不同分析的模糊推理与思考,分析出更加高效的控制方法。模糊系统简化系统设计的复杂性,特别适用于非线性、时变、滞后、模型不完全系统的控制。模糊控制具有许多的特点,不依赖于被控对象对的精确数学模型、利用控制法则来描述系统变量间的关系,模糊控制器作为一个语言控制器,便于操作人员使用自然语言进行人机对话。它的造成核心是具有智能性