什么是图像
通过成像系统(相机)拍摄,数字化之后的图像就是一个二维数组(矩阵)。
如何访问图像
访问顺序:red -> green -> blue
宽 高 通道
图像有单通道和多通道之分,访问时只需要以多维数组的形式访问即可。
下面是一个代码示范:
import numpy as np
# 假设 image 是一个 NumPy 数组,形状为 (nHeight, nWidth, nChannel)
# 其中 nChannel 通常为 3,代表 RGB 通道
# 定义图像数据的大小
nHeight = 100 # 图像的高度
nWidth = 100 # 图像的宽度
nChannel = 3 # 图像的通道数,通常是3(RGB)
# 创建一个随机的三维数组来模拟图像数据
image = np.random.randint(0, 256, (nHeight, nWidth, nChannel), dtype=np.uint8)
# 遍历图像数据
for i in range(nHeight):
for j in range(nWidth):
for k in range(nChannel):
# 访问第i行,第j列,第k通道的像素值
pixel_value = image[i, j, k]
# ... 对像素值进行处理
# 例如,这里我们只是打印出来
print(f"Pixel value at ({i}, {j}, {k}) is: {pixel_value}")
我们首先导入了NumPy库,并创建了一个形状为(nHeight, nWidth, nChannel)
的随机数组
来模拟图像数据。
然后,我们使用三个嵌套的for循环来遍历图像的每个像素值。
TIPS:图像就是多维数组
将 RGB图像 序列化:
import numpy as np
# 假设 image 是一个 NumPy 数组,形状为 (nHeight, nWidth, 3)
# 其中 nHeight 和 nWidth 分别代表图像的高度和宽度
# 定义图像数据的大小
nHeight = 100 # 图像的高度
nWidth = 100 # 图像的宽度
# 创建一个随机的三维数组来模拟图像数据
image = np.random.randint(0, 256, (nHeight, nWidth, 3), dtype=np.uint8)
# 遍历图像数据,按照RGB顺序打印每个像素的颜色值
for i in range(nHeight):
for j in range(nWidth):
# 打印RGB通道的值
print(f"R: {image[i, j, 0]}, G: {image[i, j, 1]}, B: {image[i, j, 2]}")
我们首先导入了NumPy库,并创建了一个形状为(nHeight, nWidth, 3)
的随机数组来模拟图
像数据。然后,我们使用两个嵌套的for循环来遍历图像的每个像素,并按照RGB顺序打印每个像
素的颜色值。
问:什么是图像仿射变换
答:仿射变换就是 线性变化+平移
问:什么是线性变换
答:线性变换是
① 变换前是直线的,变换后依然是直线
② 直线比例保持不变
常见的灰度处理算法
问:常见的灰度变换有哪些
答:
① 图像反转
原理:灰度级数(256) - 当前灰度
公式:S = L- 1 - r
[ 0 , 255 ] 代表颜色的深浅
② 对数变换
由对数变换的图像中我们可以很直观的看出
由于对数本身上凸的性质
它可以把低灰度(较暗)的部分的亮度提高,V越大,灰度提高越明显
即图像越来越亮。
③伽马变换(Gamma) [可改变对比度]
原理:Gamma变换其实就是幂指数校正,目的是将灰度较窄的地方拉伸为较宽的区域。
问:常见的灰度变换有哪些
答:直方图均衡化
由于图像对比度不强,所以图像整体上较暗或者较亮(即图像灰度集中在直方图的两端)。
为了增加对比度,让图像看起来更清楚,所以有了直方图均衡化。
问:什么是空间域
答:空间域指图像平面本身,即图像中的每个像素单元。
问:为什么要用空间域这种难解的名字
答:空间域主要是为了区别变换域,变换域是将图像转移到其他的域(如频率域),在变化域做完
处理之后再通过反变换的方式转换回来。
问:空间域图像处理包含哪些方面
答:空间域图像处理主要包括灰度变换和空间域滤波。
绘制直方图
在绘制直方图时,将灰度变换作为 X 轴处理
灰度级出现的次数作为 Y 轴处理
则可知:
X 轴的数据为X= [1 2 3 4 5]
Y 轴的数据为Y= [3 1 2 1 2]
根据上述关系,可分别做出折线图和直方图。
一般情况下,折线图和直方图都被称为直方图。
在实际处理中,图像直方图的 X 轴区间一般是[0,255],对应的是八位位图的256个灰度级
Y 轴对应的是具有相应灰度级的像素点个数。
图像的数字化表示与访问
图像在计算机