nn.ModuleList

这行代码使用列表推导式创建了一组卷积层,并将它们存储在一个 `nn.ModuleList` 中。每个卷积层的参数根据前面计算出的通道数分配 `c_` 来动态设置。让我们详细拆解这行代码的工作原理:

```python
self.m = nn.ModuleList([
    nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) 
    for k, c_ in zip(k, c_)
])
```

### 详细解释

#### 1. **`nn.ModuleList([...])`**

- **`nn.ModuleList`**:
  - 这是 PyTorch 中的一种容器类,类似于 Python 的普通列表,但专门用于存储 `nn.Module` 子类的实例。
  - 与普通列表不同,`nn.ModuleList` 能够让 PyTorch 正确注册并跟踪其中的所有子模块,在进行参数优化或模型保存时非常有用。

#### 2. **`nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False)`**

- **`nn.Conv2d`**:
  - 这是 PyTorch 中的二维卷积层。它有多个参数,用来定义卷积的输入、输出、核大小等属性。

- **参数说明**:
  - **`c1`**: 输入通道数(`in_channels`)。这是每个卷积层接受的输入通道数。
  - **`int(c_)`**: 输出通道数(`out_channels`)。通过 `int(c_)` 将前面计算的 `c_` 强制转换为整数,表示这个卷积层的输出通道数。
  - **`k`**: 卷积核大小(`kernel_size`)。这决定了卷积操作的感受野大小。
  - **`s`**: 卷积的步幅(`stride`)。这决定了每次卷积操作后,输入特征图的缩减程度。
  - **`k // 2`**: 填充(`padding`)。这里使用了卷积核大小的一半来做填充,使得输出特征图尺寸保持不变(`same` 卷积)。
  - **`groups=math.gcd(c1, int(c_))`**:
    - **`groups`** 参数决定了分组卷积的组数。
    - **`math.gcd(c1, int(c_))`** 计算输入通道数 `c1` 和输出通道数 `c_` 的最大公约数(GCD),使得卷积层可以进行深度卷积(Depthwise Convolution)或其他类型的分组卷积。如果 GCD 为 1,表示没有分组;如果 GCD 为 `c1` 或 `c_`,表示深度卷积。
  - **`bias=False`**:
    - 在卷积层中不使用偏置项,因为通常在卷积后会有一个批归一化层来消除偏置项的影响。

#### 3. **`for k, c_ in zip(k, c_)`**

- **`zip(k, c_)`**:
  - `zip` 函数将 `k` 和 `c_` 两个可迭代对象逐对配对,并返回一个元组组成的迭代器。
  - 这里 `k` 是卷积核大小的列表,`c_` 是前面通过最小二乘法计算出的输出通道数列表。

- **列表推导式**:
  - 对 `k` 和 `c_` 中的每一对元素创建一个 `nn.Conv2d` 层,并将这些层加入到 `nn.ModuleList` 中。
  - 例如,如果 `k = [1, 3]` 且 `c_ = [4, 2]`,那么会创建两个卷积层,一个使用 `1x1` 核并输出 4 个通道,另一个使用 `3x3` 核并输出 2 个通道。

### 总结

这行代码的核心目的是动态创建多个二维卷积层,每个层使用不同的卷积核大小 `k` 和对应的输出通道数 `c_`,并将这些卷积层存储在一个 `nn.ModuleList` 中。这些卷积层将会在前向传播中并行处理相同的输入张量,之后再将它们的输出连接起来。通过使用 `groups` 参数和 GCD 算法,代码还可以灵活地实现分组卷积或深度卷积,从而优化计算效率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值