一个形状为[2500,256]的张量,判断2500个向量中哪个为全0

import numpy as np

# 假设 your_tensor 是你的 [2500, 256] 形状的张量
your_tensor = np.random.randn(2500, 256)  # 这里用随机数生成张量作为示例

# 判断每个子张量是否全为零
is_zero = np.all(your_tensor == 0, axis=1)

# 找出所有全零张量的索引
zero_indices = np.where(is_zero)[0]

print(zero_indices)
 

OR

import torch

# 假设 your_tensor 是你的 [2500, 256] 形状的张量
your_tensor = torch.randn(2500, 256)  # 这里用随机数生成张量作为示例

# 判断每个子张量是否全为零
is_zero = torch.all(your_tensor == 0, dim=1)

# 找出所有全零张量的索引
zero_indices = torch.where(is_zero)[0]

print(zero_indices)
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值