YOLOv5改进 | 注意力机制 | 轻量高效的反向残差注意力机制

 秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


专栏目录: 《YOLOv5入门 + 改进涨点》专栏介绍 & 专栏目录 |目前已有60+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进


本文介绍一种专注于开发现代、高效、轻量级的密集预测模型,在参数、FLOPs和性能之间进行权衡。倒置残差块(IRB)作为轻量级CNN的基础设施,但在基于注意力的研究中还没有相对应的识别。从高效IRB和Transformer的有效组件的统一视角重新思考轻量级基础设施,将基于CNN的IRB扩展到基于注意力的模型,并抽象出一个一残差元移动块(MMB)用于轻量级模型设计。遵循简单但有效的设计准则推导出现代化的倒置残差移动块(iRMB),并仅用iRMB构建了类似ResNet的高效模型(EMO)用于下游任务。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。  

专栏地址 YOLOv5改进+入门——持续更新各种有效涨点方法 点击即可跳转  

目录

1.原理

2. 将IRMB添加到YOLOv5中

2.1 IRMB的代码实现

2.2 新增yaml文件

2.3 注册模块

2.4 执行程序

3. 完整代码分享

4. GFLOPs

5. 进阶

6. 总结 


1.原理

论文地址:Rethinking Mobile Block for Efficient Attention-based Models——点击即可跳转

官方代码: 官方代码仓库——点击即可跳转

在提供的文档中,介绍的关键概念是倒置残差移动块 (iRMB),它是轻量级 CNN 中使用的倒置残差块 (IRB)的现代改编,旨在提高基于注意力的模型的效率。下面是对 IRMB 背后主要原理的简化解释,无需深入研究复杂的公式:

倒置残差移动块 (IRMB) 的关键原理:

计算效率

  • 深度卷积 (DW-Conv):与标准卷积相比,这种技术显著减少了参数数量和计算复杂度。它分别对每个输入通道进行操作,使其更加高效。

  • 改进的多头自注意力 (EW-MHSA):MHSA 的增强版本有助于更有效地捕获数据中远距离元素之间的依赖关系,这对于基于注意力的模型至关重要。

简单和统一

  • 简单设计:IRMB 避免使用复杂的结构或运算符,使其易于实现和优化各种应用。

  • 统一核心模块:通过使用尽可能少的核心模块,IRMB 降低了整体模型复杂性,便于更轻松地部署和更快地计算。

多功能性和性能

  • 元移动块 (MMB):此块是一个多功能构建块,可用于构建不同的模块,包括 IRB、MHSA 和前馈网络。它确保在各种任务中保持一致和高效的性能。

  • 类似 ResNet 的架构 (EMO):使用 IRMB 构建的高效模型 (EMO) 利用类似 ResNet 的 4 阶段架构,这对短距离和长距离依赖关系都有效,从而提高了整体模型性能。

实际结果

  • 基准性能:大量实验表明,使用 IRMB(例如 EMO-1M、EMO-2M 和 EMO-5M)构建的模型在准确性、效率(以 FLOP 衡量)和速度方面优于许多最先进的轻量级模型。

IRMB 优势总结:

  • 提高效率:通过结合 DW-Conv 和改进的 MHSA,IRMB 实现了更高的计算效率。

  • 简化设计:使用简单统一的设计使模型易于实现和部署。

  • 提高性能:基于 IRMB 的模型在各种基准测试中表现出色,在参数、效率和准确性之间表现出更好的权衡。

这些原则使倒置残差移动块 (IRMB) 成为开发轻量级高效模型的强大框架,用于基于注意力的系统中进行密集预测。

2. 将IRMB添加到YOLOv5中

2.1 IRMB的代码实现

关键步骤一: 将下面代码添加到 yolov5/models/common.py中

import math
import torch.nn.functional as F
from functools import partial
from einops import rearrange
from timm.models._efficientnet_blocks import SqueezeExcite
from timm.models.layers import DropPath

inplace = True

class LayerNorm2d(nn.Module):

    def __init__(self, normalized_shape, eps=1e-6, elementwise_affine=True):
        super().__init__()
        self.norm = nn.LayerNorm(normalized_shape, eps, elementwise_affine)

    def forward(self, x):
        x = rearrange(x, 'b c h w -> b h w c').contiguous()
        x = self.norm(x)
        x = rearrange(x, 'b h w c -> b c h w').contiguous()
        return x


def get_norm(norm_layer='in_1d'):
    eps = 1e-6
    norm_dict = {
        'none': nn.Identity,
        'in_1d': partial(nn.InstanceNorm1d, eps=eps),
        'in_2d': partial(nn.InstanceNorm2d, eps=eps),
        'in_3d': partial(nn.InstanceNorm3d, eps=eps),
        'bn_1d': partial(nn.BatchNorm1d, eps=eps),
        'bn_2d': partial(nn.BatchNorm2d, eps=eps),
        # 'bn_2d': partial(nn.SyncBatchNorm, eps=eps),
        'bn_3d': partial(nn.BatchNorm3d, eps=eps),
        'gn': partial(nn.GroupNorm, eps=eps),
        'ln_1d': partial(nn.LayerNorm, eps=eps),
        'ln_2d': partial(LayerNorm2d, eps=eps),
    }
    return norm_dict[norm_layer]


def get_act(act_layer='relu'):
    act_dict = {
        'none': nn.Identity,
        'relu': nn.ReLU,
        'relu6': nn.ReLU6,
        'silu': nn.SiLU
    }
    return act_dict[act_layer]


class ConvNormAct(nn.Module):

    def __init__(self, dim_in, dim_out, kernel_size, stride=1, dilation=1, groups=1, bias=False,
                 skip=False, norm_layer='bn_2d', act_layer='relu', inplace=True, drop_path_rate=0.):
        super(ConvNormAct, self).__init__()
        self.has_skip = skip and dim_in == dim_out
        padding = math.ceil((kernel_size - stride) / 2)
        self.conv = nn.Conv2d(dim_in, dim_out, kernel_size, stride, padding, dilation, groups, bias)
        self.norm = get_norm(norm_layer)(dim_out)
        self.act = get_act(act_layer)(inplace=inplace)
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity()

    def forward(self, x):
        shortcut = x
        x = self.conv(x)
        x = self.norm(x)
        x = self.act(x)
        if self.has_skip:
            x = self.drop_path(x) + shortcut
        return x



class iRMB(nn.Module):

    def __init__(self, dim_in, norm_in=True, has_skip=True, exp_ratio=1.0, norm_layer='bn_2d',
                 act_layer='relu', v_proj=True, dw_ks=3, stride=1, dilation=1, se_ratio=0.0, dim_head=8, window_size=7,
                 attn_s=True, qkv_bias=False, attn_drop=0., drop=0., drop_path=0., v_group=False, attn_pre=False):
        super().__init__()
        dim_out = dim_in
        self.norm = get_norm(norm_layer)(dim_in) if norm_in else nn.Identity()
        dim_mid = int(dim_in * exp_ratio)
        self.has_skip = (dim_in == dim_out and stride == 1) and has_skip
        self.attn_s = attn_s
        if self.attn_s:
            assert dim_in % dim_head == 0, 'dim should be divisible by num_heads'
            self.dim_head = dim_head
            self.window_size = window_size
            self.num_head = dim_in // dim_head
            self.scale = self.dim_head ** -0.5
            self.attn_pre = attn_pre
            self.qk = ConvNormAct(dim_in, int(dim_in * 2), kernel_size=1, bias=qkv_bias, norm_layer='none',
                                  act_layer='none')
            self.v = ConvNormAct(dim_in, dim_mid, kernel_size=1, groups=self.num_head if v_group else 1, bias=qkv_bias,
                                 norm_layer='none', act_layer=act_layer, inplace=inplace)
            self.attn_drop = nn.Dropout(attn_drop)
        else:
            if v_proj:
                self.v = ConvNormAct(dim_in, dim_mid, kernel_size=1, bias=qkv_bias, norm_layer='none',
                                     act_layer=act_layer, inplace=inplace)
            else:
                self.v = nn.Identity()
        self.conv_local = ConvNormAct(dim_mid, dim_mid, kernel_size=dw_ks, stride=stride, dilation=dilation,
                                      groups=dim_mid, norm_layer='bn_2d', act_layer='silu', inplace=inplace)
        self.se = SqueezeExcite(dim_mid, rd_ratio=se_ratio, act_layer=get_act(act_layer)) if se_ratio > 0.0 else nn.Identity()

        self.proj_drop = nn.Dropout(drop)
        self.proj = ConvNormAct(dim_mid, dim_out, kernel_size=1, norm_layer='none', act_layer='none', inplace=inplace)
        self.drop_path = DropPath(drop_path) if drop_path else nn.Identity()

    def forward(self, x):
        shortcut = x
        x = self.norm(x)
        B, C, H, W = x.shape
        if self.attn_s:
            # padding
            if self.window_size <= 0:
                window_size_W, window_size_H = W, H
            else:
                window_size_W, window_size_H = self.window_size, self.window_size
            pad_l, pad_t = 0, 0
            pad_r = (window_size_W - W % window_size_W) % window_size_W
            pad_b = (window_size_H - H % window_size_H) % window_size_H
            x = F.pad(x, (pad_l, pad_r, pad_t, pad_b, 0, 0,))
            n1, n2 = (H + pad_b) // window_size_H, (W + pad_r) // window_size_W
            x = rearrange(x, 'b c (h1 n1) (w1 n2) -> (b n1 n2) c h1 w1', n1=n1, n2=n2).contiguous()
            # attention
            b, c, h, w = x.shape
            qk = self.qk(x)
            qk = rearrange(qk, 'b (qk heads dim_head) h w -> qk b heads (h w) dim_head', qk=2, heads=self.num_head,
                           dim_head=self.dim_head).contiguous()
            q, k = qk[0], qk[1]
            attn_spa = (q @ k.transpose(-2, -1)) * self.scale
            attn_spa = attn_spa.softmax(dim=-1)
            attn_spa = self.attn_drop(attn_spa)
            if self.attn_pre:
                x = rearrange(x, 'b (heads dim_head) h w -> b heads (h w) dim_head', heads=self.num_head).contiguous()
                x_spa = attn_spa @ x
                x_spa = rearrange(x_spa, 'b heads (h w) dim_head -> b (heads dim_head) h w', heads=self.num_head, h=h,
                                  w=w).contiguous()
                x_spa = self.v(x_spa)
            else:
                v = self.v(x)
                v = rearrange(v, 'b (heads dim_head) h w -> b heads (h w) dim_head', heads=self.num_head).contiguous()
                x_spa = attn_spa @ v
                x_spa = rearrange(x_spa, 'b heads (h w) dim_head -> b (heads dim_head) h w', heads=self.num_head, h=h,
                                  w=w).contiguous()
            # unpadding
            x = rearrange(x_spa, '(b n1 n2) c h1 w1 -> b c (h1 n1) (w1 n2)', n1=n1, n2=n2).contiguous()
            if pad_r > 0 or pad_b > 0:
                x = x[:, :, :H, :W].contiguous()
        else:
            x = self.v(x)

        x = x + self.se(self.conv_local(x)) if self.has_skip else self.se(self.conv_local(x))

        x = self.proj_drop(x)
        x = self.proj(x)

        x = (shortcut + self.drop_path(x)) if self.has_skip else x
        return x

class Bottleneck(nn.Module):
    """Standard bottleneck."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
        """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
        expansion.
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, k[0], 1)
        self.cv2 = Conv(c_, c2, k[1], 1, g=g)
        self.add = shortcut and c1 == c2
        self.iRMB = iRMB(c2)

    def forward(self, x):
        """'forward()' applies the YOLO FPN to input data."""
        return x + self.iRMB(self.cv2(self.cv1(x))) if self.add else self.iRMB(self.cv2(self.cv1(x)))



class C2f_iRMB(nn.Module):
    """Faster Implementation of CSP Bottleneck with 2 convolutions."""

    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
        expansion.
        """
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

    def forward(self, x):
        """Forward pass through C2f layer."""
        y = list(self.cv1(x).chunk(2, 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

    def forward_split(self, x):
        """Forward pass using split() instead of chunk()."""
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(m(y[-1]) for m in self.m)
        return self.cv2(torch.cat(y, 1))

在处理图像的背景下,倒置残差移动块 (iRMB) 遵循结构化方法以实现高效准确的结果。以下是 iRMB 应用于图像处理时的主要流程概述:

iRMB 在图像处理中的主要流程

输入图像

  • 该过程从需要处理的输入图像开始。此图像通常表示为像素值的多维数组。

初始卷积

  • 1x1 卷积:输入图像首先经过逐点 1x1 卷积层。此层减少了输入图像中的通道数(或特征),使后续的深度卷积更加高效。

深度卷积 (DW-Conv)

  • 3x3 深度卷积:然后通过深度卷积处理 1x1 卷积层的输出。与跨所有通道运行的传统卷积不同,深度卷积对每个输入通道应用单个卷积滤波器。这显著减少了计算负荷和参数数量。

  • 深度卷积在保持计算效率的同时捕获图像中的空间特征。

逐点卷积

  • 1x1 卷积:在深度卷积之后,应用另一个 1x1 卷积层。该层负责跨通道组合深度卷积的输出,从而有效地增加输出特征的维度。

多头自注意力 (MHSA)

  • 然后使用增强的多头自注意力机制处理逐点卷积的输出。MHSA 通过计算注意力分数并动态加权输入的不同部分,帮助模型关注图像的重要部分。

  • 此步骤对于捕获图像中的长距离依赖关系和上下文信息至关重要。

前馈网络 (FFN)

  • FFN 模块:注意力增强特征通过前馈网络传递,通常由两个线性变换组成,中间有一个 ReLU 激活。这有助于进一步细化和组合前几层提取的特征。

残差连接

  • 在整个 iRMB 中,残差连接用于将块的输入直接添加到其输出。这有助于保留来自初始层的信息,并允许在训练期间实现更好的梯度流。

输出特征图

  • iRMB 的最终输出是一个特征图,该特征图经过深度卷积、点卷积和自注意力机制的有效处理。然后,此特征图可用于各种下游任务,如图像分类、对象检测或分割。

iRMB 处理流程摘要:

  • 高效卷积操作:1x1 和深度卷积的组合减少了参数数量和计算成本。

  • 增强特征提取:多头自注意力捕获长距离依赖关系和重要的上下文信息。

  • 残差连接:这些连接有助于保存信息和稳定训练。

  • 前馈网络:细化特征以提高下游任务的性能。

通过遵循这种结构化方法,iRMB 可以有效地处理图像,平衡效率和准确性,使其适用于需要轻量级和高性能模型的应用程序。

2.2 新增yaml文件

关键步骤二在下/yolov5/models下新建文件 yolov5_iRMB.yaml并将下面代码复制进去

  • 目标检测yaml文件 ,可尝试将iRMB放在不同的位置
# Ultralytics YOLOv5 🚀, AGPL-3.0 license

# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
  - [10, 13, 16, 30, 33, 23] # P3/8
  - [30, 61, 62, 45, 59, 119] # P4/16
  - [116, 90, 156, 198, 373, 326] # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [
    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
    [-1, 3, C3, [128]],
    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
    [-1, 6, C3, [256]],
    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
    [-1, 9, C3, [512]],
    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
    [-1, 3, C3, [1024]],
    [-1, 1, SPPF, [1024, 5]], # 9
  ]

# YOLOv5 v6.0 head
head: [
    [-1, 1, Conv, [512, 1, 1]],
    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
    [[-1, 6], 1, Concat, [1]], # cat backbone P4
    [-1, 3, C3, [512, False]], # 13

    [-1, 1, Conv, [256, 1, 1]],
    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
    [[-1, 4], 1, Concat, [1]], # cat backbone P3
    [-1, 3, C3, [256, False]], # 17 (P3/8-small)
    [-1, 1, iRMB, []], # 18

    [-1, 1, Conv, [256, 3, 2]],
    [[-1, 14], 1, Concat, [1]], # cat head P4
    [-1, 3, C3, [512, False]], # 21 (P4/16-medium)
    [-1, 1, iRMB, []], # 22

    [-1, 1, Conv, [512, 3, 2]],
    [[-1, 10], 1, Concat, [1]], # cat head P5
    [-1, 3, C3, [1024, False]], # 25 (P5/32-large)
    [-1, 1, iRMB, []], # 26

    [[18, 22, 26], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
  ]
  • 语义分割yaml文件
# Ultralytics YOLOv5 🚀, AGPL-3.0 license

# Parameters
nc: 80 # number of classes
depth_multiple: 1.0 # model depth multiple
width_multiple: 1.0 # layer channel multiple
anchors:
  - [10, 13, 16, 30, 33, 23] # P3/8
  - [30, 61, 62, 45, 59, 119] # P4/16
  - [116, 90, 156, 198, 373, 326] # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [
    [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
    [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
    [-1, 3, C3, [128]],
    [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
    [-1, 6, C3, [256]],
    [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
    [-1, 9, C3, [512]],
    [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
    [-1, 3, C3, [1024]],
    [-1, 1, SPPF, [1024, 5]], # 9
  ]

# YOLOv5 v6.0 head
head: [
    [-1, 1, Conv, [512, 1, 1]],
    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
    [[-1, 6], 1, Concat, [1]], # cat backbone P4
    [-1, 3, C3, [512, False]], # 13

    [-1, 1, Conv, [256, 1, 1]],
    [-1, 1, nn.Upsample, [None, 2, "nearest"]],
    [[-1, 4], 1, Concat, [1]], # cat backbone P3
    [-1, 3, C3, [256, False]], # 17 (P3/8-small)
    [-1, 1, iRMB, []], # 18

    [-1, 1, Conv, [256, 3, 2]],
    [[-1, 14], 1, Concat, [1]], # cat head P4
    [-1, 3, C3, [512, False]], # 21 (P4/16-medium)
    [-1, 1, iRMB, []], # 22

    [-1, 1, Conv, [512, 3, 2]],
    [[-1, 10], 1, Concat, [1]], # cat head P5
    [-1, 3, C3, [1024, False]], # 25 (P5/32-large)
    [-1, 1, iRMB, []], # 26

    [[18, 22, 26], 1, Segment, [nc, anchors, 32, 256]], # Detect(P3, P4, P5)
  ]

温馨提示:本文只是对yolov5基础上添加模块,如果要对yolov5n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。 


# YOLOv5n
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
 
# YOLOv5s
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
 
# YOLOv5l 
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
 
# YOLOv5m
depth_multiple: 0.67  # model depth multiple
width_multiple: 0.75  # layer channel multiple
 
# YOLOv5x
depth_multiple: 1.33  # model depth multiple
width_multiple: 1.25  # layer channel multiple

2.3 注册模块

关键步骤三在yolo.py的parse_model函数中注册 添加“iRMB",

       elif m is iRMB:
            args = [ch[f], ch[f]]

2.4 执行程序

在train.py中,将cfg的参数路径设置为yolov5_iRMB.yaml的路径

建议大家写绝对路径,确保一定能找到

🚀运行程序,如果出现下面的内容则说明添加成功🚀 

                 from  n    params  module                                  arguments
  0                -1  1      7040  models.common.Conv                      [3, 64, 6, 2, 2]
  1                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]
  2                -1  3    306880  models.common.C3                        [128, 128, 3]
  3                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]
  4                -1  6   2307840  models.common.C3                        [256, 256, 6]
  5                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]
  6                -1  9  13541632  models.common.C3                        [512, 512, 9]
  7                -1  1   4720640  models.common.Conv                      [512, 1024, 3, 2]
  8                -1  3  19428864  models.common.C3                        [1024, 1024, 3]
  9                -1  1   2624512  models.common.SPPF                      [1024, 1024, 5]
 10                -1  1    525312  models.common.Conv                      [1024, 512, 1, 1]
 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
 12           [-1, 6]  1         0  models.common.Concat                    [1]
 13                -1  3   5126912  models.common.C3                        [1024, 512, 3, False]
 14                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]
 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
 16           [-1, 4]  1         0  models.common.Concat                    [1]
 17                -1  3   1285504  models.common.C3                        [512, 256, 3, False]
 18                -1  1    265472  models.common.iRMB                      [256, 256]
 19                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]
 20          [-1, 14]  1         0  models.common.Concat                    [1]
 21                -1  3   4864768  models.common.C3                        [512, 512, 3, False]
 22                -1  1   1055232  models.common.iRMB                      [512, 512]
 23                -1  1   2360320  models.common.Conv                      [512, 512, 3, 2]
 24          [-1, 10]  1         0  models.common.Concat                    [1]
 25                -1  3  19428864  models.common.C3                        [1024, 1024, 3, False]        
 26                -1  1   4207616  models.common.iRMB                      [1024, 1024]
 27      [18, 22, 26]  1    457725  Detect                                  [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [256, 512, 1024]]
YOLOv5_iRMB summary: 1304 layers, 84787133 parameters, 84787133 gradients, 660.7 GFLOPs

3. 完整代码分享

https://pan.baidu.com/s/1-5-_AfvIVjIg66wpwATVUA?pwd=puym

 提取码: puym 

4. GFLOPs

关于GFLOPs的计算方式可以查看百面算法工程师 | 卷积基础知识——Convolution

未改进的GFLOPs

img

改进后的GFLOPs

现在手上没有卡了,等过段时候有卡了把这补上,需要的同学自己测一下

5. 进阶

可以结合损失函数或者卷积模块进行多重改进

YOLOv5改进 | 损失函数 | EIoU、SIoU、WIoU、DIoU、FocuSIoU等多种损失函数——点击即可跳转

6. 总结 

倒置残差移动块 (iRMB) 是一种专门为高效高性能图像处理而设计的架构框架,结合了深度卷积、点卷积和多头自注意力机制。iRMB 的核心原理在于通过使用 1x1 点卷积来压缩和扩展特征维度,并结合在每个输入通道上独立运行的 3x3 深度卷积,来降低计算复杂度和参数数量。此设置可有效捕获空间特征。此外,还采用多头自注意力 (MHSA) 机制来关注图像的重要部分,捕获长距离依赖关系和上下文信息。残差连接集成在整个块中,以确保更好的梯度流并保留来自初始层的信息。这种组合使 iRMB 能够以效率和准确性的平衡来处理图像,使其成为轻量级和高性能图像处理任务的理想选择。 

  • 10
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kay_545

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值