YOLOv8改进 | 模块缝合 | C2f 融合REPVGGOREPA提升检测性能【详细步骤 完整代码】

秋招面试专栏推荐 :深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


专栏目录 :《YOLOv8改进有效涨点》专栏介绍 & 专栏目录 | 目前已有100+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进——点击即可跳转


结构重参数化技术在计算机视觉领域日益受到重视,它能在不增加推理成本的情况下提升深度学习模型性能。本文将介绍了一种C2f融合REPVGGOREPA的方法,通过将复杂训练模块简化为单次卷积来降低训练成本。能显著减少内存消耗和加快训练速度。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址YOLOv8改进——更新各种有效涨点方法——点击即可跳转  

目录

 1. 原理

2. 将C2f_REPVGGOREPA添加到yolov8网络中

2.1 C2f_REPVGGOREPA代码实现

2.2 C2f_REPVGGOREPA的神经网络模块代码解析

2.3 更改init.py文件

2.4 添加yaml文件

2.5 注册模块

2.6 执行程序

3. 完整代码分享

4. GFLOPs

5. 进阶

6. 总结


 1. 原理

论文地址:Online Convolutional Re-parameterization——点击即可跳转

官方代码:官方代码仓库——点击即可跳转

REPVGG和OREPA的主要原理可以概括为结构重参数化的应用与优化。以下是两者的主要原理解释:

1. REPVGG的原理

REPVGG是一种基于VGG的卷积神经网络,应用了结构重参数化(Structural Re-parameterization)的概念。具体来说,它在训练阶段使用复杂的多分支结构以提升模型的表现力,而在推理阶段,将这些复杂的结构整合为一个简单的VGG-like卷积块,从而在保持高精度的同时提高了推理效率。这种方法在训练阶段引入了更多的计算成本,但通过在推理阶段将这些成本“折叠”成一个简单的结构,从而在推理时保持较高的效率。

2. OREPA的原理

OREPA(Online Convolutional Re-parameterization)是对传统结构重参数化方法的改进。它主要通过以下方式优化了训练效率:

  • 在线重参数化(Online Re-parameterization):OREPA在训练过程中简化了复杂的训练结构,通过去除非线性层(如Batch Normalization),引入线性缩放层来替代,从而在保持多分支优化方向的多样性的同时,实现了在线的结构简化。

  • 块压缩(Block Squeezing):在OREPA中,经过线性化后的块可以在训练过程中被压缩为单个卷积核,从而显著减少训练时的计算和存储开销。这使得OREPA在保持高精度的同时,能够显著提高训练效率并降低显存占用。

主要区别

  • 结构设计:REPVGG的多分支结构在训练阶段引入了更高的计算复杂度,而OREPA通过去除非线性层并引入线性缩放层,使得其训练时的计算开销大大降低。

  • 训练成本:REPVGG的训练成本较高,而OREPA通过在线重参数化和块压缩,显著降低了训练成本。

总结来说,OREPA通过优化结构重参数化过程中的训练效率,保留了高效的推理能力,并能够在各种计算机视觉任务中提供一致的性能提升。

2. 将C2f_REPVGGOREPA添加到yolov8网络中

2.1 C2f_REPVGGOREPA代码实现

关键步骤一将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/block.py中,并在该文件的__all__中添加“C2f_REPVGGOREPA”


import torch, math
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
import numpy as np

class SEAttention(nn.Module):
    def __init__(self, channel=512,reduction=16):
        super().__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel, bias=False),
            nn.Sigmoid()
        )
 
    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)
 
    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y.expand_as(x)

def transI_fusebn(kernel, bn):
    gamma = bn.weight
    std = (bn.running_var + bn.eps).sqrt()
    return kernel * ((gamma / std).reshape(-1, 1, 1, 1)), bn.bias - bn.running_mean * gamma / std

def transVI_multiscale(kernel, target_kernel_size):
    H_pixels_to_pad = (target_kernel_size - kernel.size(2)) // 2
    W_pixels_to_pad = (target_kernel_size - kernel.size(3)) // 2
    return F.pad(kernel, [W_pixels_to_pad, W_pixels_to_pad, H_pixels_to_pad, H_pixels_to_pad])

class OREPA(nn.Module):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 stride=1,
                 padding=None,
                 groups=1,
                 dilation=1,
                 act=True,
                 internal_channels_1x1_3x3=None,
                 deploy=False,
                 single_init=False, 
                 weight_only=False,
                 init_hyper_para=1.0, init_hyper_gamma=1.0):
        super(OREPA, self).__init__()
        self.deploy = deploy

        self.nonlinear = Conv.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
        self.weight_only = weight_only
        
        self.kernel_size = kernel_size
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.groups = groups

        self.stride = stride
        padding = autopad(kernel_size, padding, dilation)
        self.padding = padding
        self.dilation = dilation

        if deploy:
            self.orepa_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
                                      padding=padding, dilation=dilation, groups=groups, bias=True)

        else:

            self.branch_counter = 0

            self.weight_orepa_origin = nn.Parameter(torch.Tensor(out_channels, int(in_channels / self.groups), kernel_size, kernel_size))
            init.kaiming_uniform_(self.weight_orepa_origin, a=math.sqrt(0.0))
            self.branch_counter += 1

            self.weight_orepa_avg_conv = nn.Parameter(
                torch.Tensor(out_channels, int(in_channels / self.groups), 1,
                            1))
            self.weight_orepa_pfir_conv = nn.Parameter(
                torch.Tensor(out_channels, int(in_channels / self.groups), 1,
                            1))
            init.kaiming_uniform_(self.weight_orepa_avg_conv, a=0.0)
            init.kaiming_uniform_(self.weight_orepa_pfir_conv, a=0.0)
            self.register_buffer(
                'weight_orepa_avg_avg',
                torch.ones(kernel_size,
                        kernel_size).mul(1.0 / kernel_size / kernel_size))
            self.branch_counter += 1
            self.branch_counter += 1

            self.weight_orepa_1x1 = nn.Parameter(
                torch.Tensor(out_channels, int(in_channels / self.groups), 1,
                            1))
            init.kaiming_uniform_(self.weight_orepa_1x1, a=0.0)
            self.branch_counter += 1

            if internal_channels_1x1_3x3 is None:
                internal_channels_1x1_3x3 = in_channels if groups <= 4 else 2 * in_channels

            if internal_channels_1x1_3x3 == in_channels:
                self.weight_orepa_1x1_kxk_idconv1 = nn.Parameter(
                    torch.zeros(in_channels, int(in_channels / self.groups), 1, 1))
                id_value = np.zeros(
                    (in_channels, int(in_channels / self.groups), 1, 1))
                for i in range(in_channels):
                    id_value[i, i % int(in_channels / self.groups), 0, 0] = 1
                id_tensor = torch.from_numpy(id_value).type_as(
                    self.weight_orepa_1x1_kxk_idconv1)
                self.register_buffer('id_tensor', id_tensor)

            else:
                self.weight_orepa_1x1_kxk_idconv1 = nn.Parameter(
                    torch.zeros(internal_channels_1x1_3x3,
                                int(in_channels / self.groups), 1, 1))
                id_value = np.zeros(
                    (internal_channels_1x1_3x3, int(in_channels / self.groups), 1, 1))
                for i in range(internal_channels_1x1_3x3):
                    id_value[i, i % int(in_channels / self.groups), 0, 0] = 1
                id_tensor = torch.from_numpy(id_value).type_as(
                    self.weight_orepa_1x1_kxk_idconv1)
                self.register_buffer('id_tensor', id_tensor)
                #init.kaiming_uniform_(
                    #self.weight_orepa_1x1_kxk_conv1, a=math.sqrt(0.0))
            self.weight_orepa_1x1_kxk_conv2 = nn.Parameter(
                torch.Tensor(out_channels,
                            int(internal_channels_1x1_3x3 / self.groups),
                            kernel_size, kernel_size))
            init.kaiming_uniform_(self.weight_orepa_1x1_kxk_conv2, a=math.sqrt(0.0))
            self.branch_counter += 1

            expand_ratio = 8
            self.weight_orepa_gconv_dw = nn.Parameter(
                torch.Tensor(in_channels * expand_ratio, 1, kernel_size,
                            kernel_size))
            self.weight_orepa_gconv_pw = nn.Parameter(
                torch.Tensor(out_channels, int(in_channels * expand_ratio / self.groups), 1, 1))
            init.kaiming_uniform_(self.weight_orepa_gconv_dw, a=math.sqrt(0.0))
            init.kaiming_uniform_(self.weight_orepa_gconv_pw, a=math.sqrt(0.0))
            self.branch_counter += 1

            self.vector = nn.Parameter(torch.Tensor(self.branch_counter, self.out_channels))
            if weight_only is False:
                self.bn = nn.BatchNorm2d(self.out_channels)

            self.fre_init()

            init.constant_(self.vector[0, :], 0.25 * math.sqrt(init_hyper_gamma))  #origin
            init.constant_(self.vector[1, :], 0.25 * math.sqrt(init_hyper_gamma))  #avg
            init.constant_(self.vector[2, :], 0.0 * math.sqrt(init_hyper_gamma))  #prior
            init.constant_(self.vector[3, :], 0.5 * math.sqrt(init_hyper_gamma))  #1x1_kxk
            init.constant_(self.vector[4, :], 1.0 * math.sqrt(init_hyper_gamma))  #1x1
            init.constant_(self.vector[5, :], 0.5 * math.sqrt(init_hyper_gamma))  #dws_conv

            self.weight_orepa_1x1.data = self.weight_orepa_1x1.mul(init_hyper_para)
            self.weight_orepa_origin.data = self.weight_orepa_origin.mul(init_hyper_para)
            self.weight_orepa_1x1_kxk_conv2.data = self.weight_orepa_1x1_kxk_conv2.mul(init_hyper_para)
            self.weight_orepa_avg_conv.data = self.weight_orepa_avg_conv.mul(init_hyper_para)
            self.weight_orepa_pfir_conv.data = self.weight_orepa_pfir_conv.mul(init_hyper_para)

            self.weight_orepa_gconv_dw.data = self.weight_orepa_gconv_dw.mul(math.sqrt(init_hyper_para))
            self.weight_orepa_gconv_pw.data = self.weight_orepa_gconv_pw.mul(math.sqrt(init_hyper_para))

            if single_init:
                #   Initialize the vector.weight of origin as 1 and others as 0. This is not the default setting.
                self.single_init()  

    def fre_init(self):
        prior_tensor = torch.Tensor(self.out_channels, self.kernel_size,
                                    self.kernel_size)
        half_fg = self.out_channels / 2
        for i in range(self.out_channels):
            for h in range(3):
                for w in range(3):
                    if i < half_fg:
                        prior_tensor[i, h, w] = math.cos(math.pi * (h + 0.5) *
                                                         (i + 1) / 3)
                    else:
                        prior_tensor[i, h, w] = math.cos(math.pi * (w + 0.5) *
                                                         (i + 1 - half_fg) / 3)

        self.register_buffer('weight_orepa_prior', prior_tensor)

    def weight_gen(self):
        weight_orepa_origin = torch.einsum('oihw,o->oihw',
                                          self.weight_orepa_origin,
                                          self.vector[0, :])

        weight_orepa_avg = torch.einsum('oihw,hw->oihw', self.weight_orepa_avg_conv, self.weight_orepa_avg_avg)
        weight_orepa_avg = torch.einsum(
             'oihw,o->oihw',
             torch.einsum('oi,hw->oihw', self.weight_orepa_avg_conv.squeeze(3).squeeze(2),
                          self.weight_orepa_avg_avg), self.vector[1, :])


        weight_orepa_pfir = torch.einsum(
            'oihw,o->oihw',
            torch.einsum('oi,ohw->oihw', self.weight_orepa_pfir_conv.squeeze(3).squeeze(2),
                          self.weight_orepa_prior), self.vector[2, :])

        weight_orepa_1x1_kxk_conv1 = None
        if hasattr(self, 'weight_orepa_1x1_kxk_idconv1'):
            weight_orepa_1x1_kxk_conv1 = (self.weight_orepa_1x1_kxk_idconv1 +
                                        self.id_tensor).squeeze(3).squeeze(2)
        elif hasattr(self, 'weight_orepa_1x1_kxk_conv1'):
            weight_orepa_1x1_kxk_conv1 = self.weight_orepa_1x1_kxk_conv1.squeeze(3).squeeze(2)
        else:
            raise NotImplementedError
        weight_orepa_1x1_kxk_conv2 = self.weight_orepa_1x1_kxk_conv2

        if self.groups > 1:
            g = self.groups
            t, ig = weight_orepa_1x1_kxk_conv1.size()
            o, tg, h, w = weight_orepa_1x1_kxk_conv2.size()
            weight_orepa_1x1_kxk_conv1 = weight_orepa_1x1_kxk_conv1.view(
                g, int(t / g), ig)
            weight_orepa_1x1_kxk_conv2 = weight_orepa_1x1_kxk_conv2.view(
                g, int(o / g), tg, h, w)
            weight_orepa_1x1_kxk = torch.einsum('gti,gothw->goihw',
                                              weight_orepa_1x1_kxk_conv1,
                                              weight_orepa_1x1_kxk_conv2).reshape(
                                                  o, ig, h, w)
        else:
            weight_orepa_1x1_kxk = torch.einsum('ti,othw->oihw',
                                              weight_orepa_1x1_kxk_conv1,
                                              weight_orepa_1x1_kxk_conv2)
        weight_orepa_1x1_kxk = torch.einsum('oihw,o->oihw', weight_orepa_1x1_kxk, self.vector[3, :])

        weight_orepa_1x1 = 0
        if hasattr(self, 'weight_orepa_1x1'):
            weight_orepa_1x1 = transVI_multiscale(self.weight_orepa_1x1,
                                                self.kernel_size)
            weight_orepa_1x1 = torch.einsum('oihw,o->oihw', weight_orepa_1x1,
                                           self.vector[4, :])

        weight_orepa_gconv = self.dwsc2full(self.weight_orepa_gconv_dw,
                                          self.weight_orepa_gconv_pw,
                                          self.in_channels, self.groups)
        weight_orepa_gconv = torch.einsum('oihw,o->oihw', weight_orepa_gconv,
                                        self.vector[5, :])

        weight = weight_orepa_origin + weight_orepa_avg + weight_orepa_1x1 + weight_orepa_1x1_kxk + weight_orepa_pfir + weight_orepa_gconv

        return weight

    def dwsc2full(self, weight_dw, weight_pw, groups, groups_conv=1):

        t, ig, h, w = weight_dw.size()
        o, _, _, _ = weight_pw.size()
        tg = int(t / groups)
        i = int(ig * groups)
        ogc = int(o / groups_conv)
        groups_gc = int(groups / groups_conv)
        weight_dw = weight_dw.view(groups_conv, groups_gc, tg, ig, h, w)
        weight_pw = weight_pw.squeeze().view(ogc, groups_conv, groups_gc, tg)

        weight_dsc = torch.einsum('cgtihw,ocgt->cogihw', weight_dw, weight_pw)
        return weight_dsc.reshape(o, int(i/groups_conv), h, w)

    def forward(self, inputs=None):
        if hasattr(self, 'orepa_reparam'):
            return self.nonlinear(self.orepa_reparam(inputs))
        
        weight = self.weight_gen()

        if self.weight_only is True:
            return weight

        out = F.conv2d(
            inputs,
            weight,
            bias=None,
            stride=self.stride,
            padding=self.padding,
            dilation=self.dilation,
            groups=self.groups)
        return self.nonlinear(self.bn(out))

    def get_equivalent_kernel_bias(self):
        return transI_fusebn(self.weight_gen(), self.bn)

    def switch_to_deploy(self):
        if hasattr(self, 'or1x1_reparam'):
            return
        kernel, bias = self.get_equivalent_kernel_bias()
        self.orepa_reparam = nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels,
                                     kernel_size=self.kernel_size, stride=self.stride,
                                     padding=self.padding, dilation=self.dilation, groups=self.groups, bias=True)
        self.orepa_reparam.weight.data = kernel
        self.orepa_reparam.bias.data = bias
        for para in self.parameters():
            para.detach_()
        self.__delattr__('weight_orepa_origin')
        self.__delattr__('weight_orepa_1x1')
        self.__delattr__('weight_orepa_1x1_kxk_conv2')
        if hasattr(self, 'weight_orepa_1x1_kxk_idconv1'):
            self.__delattr__('id_tensor')
            self.__delattr__('weight_orepa_1x1_kxk_idconv1')
        elif hasattr(self, 'weight_orepa_1x1_kxk_conv1'):
            self.__delattr__('weight_orepa_1x1_kxk_conv1')
        else:
            raise NotImplementedError
        self.__delattr__('weight_orepa_avg_avg')  
        self.__delattr__('weight_orepa_avg_conv')
        self.__delattr__('weight_orepa_pfir_conv')
        self.__delattr__('weight_orepa_prior')
        self.__delattr__('weight_orepa_gconv_dw')
        self.__delattr__('weight_orepa_gconv_pw')

        self.__delattr__('bn')
        self.__delattr__('vector')

    def init_gamma(self, gamma_value):
        init.constant_(self.vector, gamma_value)

    def single_init(self):
        self.init_gamma(0.0)
        init.constant_(self.vector[0, :], 1.0)


class OREPA_LargeConv(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=1,
                 stride=1, padding=None, groups=1, dilation=1, act=True, deploy=False):
        super(OREPA_LargeConv, self).__init__()
        assert kernel_size % 2 == 1 and kernel_size > 3
        
        padding = autopad(kernel_size, padding, dilation)
        self.stride = stride
        self.padding = padding
        self.layers = int((kernel_size - 1) / 2)
        self.groups = groups
        self.dilation = dilation

        self.kernel_size = kernel_size
        self.in_channels = in_channels
        self.out_channels = out_channels

        internal_channels = out_channels
        self.nonlinear = Conv.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

        if deploy:
            self.or_large_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
                                      padding=padding, dilation=dilation, groups=groups, bias=True)

        else:
            for i in range(self.layers):
                if i == 0:
                    self.__setattr__('weight'+str(i), OREPA(in_channels, internal_channels, kernel_size=3, stride=1, padding=1, groups=groups, weight_only=True))
                elif i == self.layers - 1:
                    self.__setattr__('weight'+str(i), OREPA(internal_channels, out_channels, kernel_size=3, stride=self.stride, padding=1, weight_only=True))
                else:
                    self.__setattr__('weight'+str(i), OREPA(internal_channels, internal_channels, kernel_size=3, stride=1, padding=1, weight_only=True))

            self.bn = nn.BatchNorm2d(out_channels)
            #self.unfold = torch.nn.Unfold(kernel_size=3, dilation=1, padding=2, stride=1)

    def weight_gen(self):
        weight = getattr(self, 'weight'+str(0)).weight_gen().transpose(0, 1)
        for i in range(self.layers - 1):
            weight2 = getattr(self, 'weight'+str(i+1)).weight_gen()
            weight = F.conv2d(weight, weight2, groups=self.groups, padding=2)
        
        return weight.transpose(0, 1)
        '''
        weight = getattr(self, 'weight'+str(0))(inputs=None).transpose(0, 1)
        for i in range(self.layers - 1):
            weight = self.unfold(weight)
            weight2 = getattr(self, 'weight'+str(i+1))(inputs=None)

            weight = torch.einsum('akl,bk->abl', weight, weight2.view(weight2.size(0), -1))
            k = i * 2 + 5
            weight = weight.view(weight.size(0), weight.size(1), k, k)
        
        return weight.transpose(0, 1)
        '''

    def forward(self, inputs):
        if hasattr(self, 'or_large_reparam'):
            return self.nonlinear(self.or_large_reparam(inputs))

        weight = self.weight_gen()
        out = F.conv2d(inputs, weight, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)
        return self.nonlinear(self.bn(out))

    def get_equivalent_kernel_bias(self):
        return transI_fusebn(self.weight_gen(), self.bn)

    def switch_to_deploy(self):
        if hasattr(self, 'or_large_reparam'):
            return
        kernel, bias = self.get_equivalent_kernel_bias()
        self.or_large_reparam = nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels,
                                     kernel_size=self.kernel_size, stride=self.stride,
                                     padding=self.padding, dilation=self.dilation, groups=self.groups, bias=True)
        self.or_large_reparam.weight.data = kernel
        self.or_large_reparam.bias.data = bias
        for para in self.parameters():
            para.detach_()
        for i in range(self.layers):
            self.__delattr__('weight'+str(i))
        self.__delattr__('bn')

class ConvBN(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size,
                             stride=1, padding=0, dilation=1, groups=1, deploy=False, nonlinear=None):
        super().__init__()
        if nonlinear is None:
            self.nonlinear = nn.Identity()
        else:
            self.nonlinear = nonlinear
        if deploy:
            self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                      stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True)
        else:
            self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                            stride=stride, padding=padding, dilation=dilation, groups=groups, bias=False)
            self.bn = nn.BatchNorm2d(num_features=out_channels)

    def forward(self, x):
        if hasattr(self, 'bn'):
            return self.nonlinear(self.bn(self.conv(x)))
        else:
            return self.nonlinear(self.conv(x))

    def switch_to_deploy(self):
        kernel, bias = transI_fusebn(self.conv.weight, self.bn)
        conv = nn.Conv2d(in_channels=self.conv.in_channels, out_channels=self.conv.out_channels, kernel_size=self.conv.kernel_size,
                                      stride=self.conv.stride, padding=self.conv.padding, dilation=self.conv.dilation, groups=self.conv.groups, bias=True)
        conv.weight.data = kernel
        conv.bias.data = bias
        for para in self.parameters():
            para.detach_()
        self.__delattr__('conv')
        self.__delattr__('bn')
        self.conv = conv

class OREPA_3x3_RepVGG(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size,
                 stride=1, padding=None, groups=1, dilation=1, act=True,
                 internal_channels_1x1_3x3=None,
                 deploy=False):
        super(OREPA_3x3_RepVGG, self).__init__()
        self.deploy = deploy

        self.nonlinear = Conv.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

        self.kernel_size = kernel_size
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.groups = groups
        padding = autopad(kernel_size, padding, dilation)
        assert padding == kernel_size // 2

        self.stride = stride
        self.padding = padding
        self.dilation = dilation

        self.branch_counter = 0

        self.weight_rbr_origin = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), kernel_size, kernel_size))
        init.kaiming_uniform_(self.weight_rbr_origin, a=math.sqrt(1.0))
        self.branch_counter += 1


        if groups < out_channels:
            self.weight_rbr_avg_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
            self.weight_rbr_pfir_conv = nn.Parameter(torch.Tensor(out_channels, int(in_channels/self.groups), 1, 1))
            init.kaiming_uniform_(self.weight_rbr_avg_conv, a=1.0)
            init.kaiming_uniform_(self.weight_rbr_pfir_conv, a=1.0)
            self.weight_rbr_avg_conv.data
            self.weight_rbr_pfir_conv.data
            self.register_buffer('weight_rbr_avg_avg', torch.ones(kernel_size, kernel_size).mul(1.0/kernel_size/kernel_size))
            self.branch_counter += 1

        else:
            raise NotImplementedError
        self.branch_counter += 1

        if internal_channels_1x1_3x3 is None:
            internal_channels_1x1_3x3 = in_channels if groups < out_channels else 2 * in_channels   # For mobilenet, it is better to have 2X internal channels

        if internal_channels_1x1_3x3 == in_channels:
            self.weight_rbr_1x1_kxk_idconv1 = nn.Parameter(torch.zeros(in_channels, int(in_channels/self.groups), 1, 1))
            id_value = np.zeros((in_channels, int(in_channels/self.groups), 1, 1))
            for i in range(in_channels):
                id_value[i, i % int(in_channels/self.groups), 0, 0] = 1
            id_tensor = torch.from_numpy(id_value).type_as(self.weight_rbr_1x1_kxk_idconv1)
            self.register_buffer('id_tensor', id_tensor)

        else:
            self.weight_rbr_1x1_kxk_conv1 = nn.Parameter(torch.Tensor(internal_channels_1x1_3x3, int(in_channels/self.groups), 1, 1))
            init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv1, a=math.sqrt(1.0))
        self.weight_rbr_1x1_kxk_conv2 = nn.Parameter(torch.Tensor(out_channels, int(internal_channels_1x1_3x3/self.groups), kernel_size, kernel_size))
        init.kaiming_uniform_(self.weight_rbr_1x1_kxk_conv2, a=math.sqrt(1.0))
        self.branch_counter += 1

        expand_ratio = 8
        self.weight_rbr_gconv_dw = nn.Parameter(torch.Tensor(in_channels*expand_ratio, 1, kernel_size, kernel_size))
        self.weight_rbr_gconv_pw = nn.Parameter(torch.Tensor(out_channels, in_channels*expand_ratio, 1, 1))
        init.kaiming_uniform_(self.weight_rbr_gconv_dw, a=math.sqrt(1.0))
        init.kaiming_uniform_(self.weight_rbr_gconv_pw, a=math.sqrt(1.0))
        self.branch_counter += 1

        if out_channels == in_channels and stride == 1:
            self.branch_counter += 1

        self.vector = nn.Parameter(torch.Tensor(self.branch_counter, self.out_channels))
        self.bn = nn.BatchNorm2d(out_channels)

        self.fre_init()

        init.constant_(self.vector[0, :], 0.25)    #origin
        init.constant_(self.vector[1, :], 0.25)      #avg
        init.constant_(self.vector[2, :], 0.0)      #prior
        init.constant_(self.vector[3, :], 0.5)    #1x1_kxk
        init.constant_(self.vector[4, :], 0.5)     #dws_conv


    def fre_init(self):
        prior_tensor = torch.Tensor(self.out_channels, self.kernel_size, self.kernel_size)
        half_fg = self.out_channels/2
        for i in range(self.out_channels):
            for h in range(3):
                for w in range(3):
                    if i < half_fg:
                        prior_tensor[i, h, w] = math.cos(math.pi*(h+0.5)*(i+1)/3)
                    else:
                        prior_tensor[i, h, w] = math.cos(math.pi*(w+0.5)*(i+1-half_fg)/3)

        self.register_buffer('weight_rbr_prior', prior_tensor)

    def weight_gen(self):

        weight_rbr_origin = torch.einsum('oihw,o->oihw', self.weight_rbr_origin, self.vector[0, :])

        weight_rbr_avg = torch.einsum('oihw,o->oihw', torch.einsum('oihw,hw->oihw', self.weight_rbr_avg_conv, self.weight_rbr_avg_avg), self.vector[1, :])
        
        weight_rbr_pfir = torch.einsum('oihw,o->oihw', torch.einsum('oihw,ohw->oihw', self.weight_rbr_pfir_conv, self.weight_rbr_prior), self.vector[2, :])

        weight_rbr_1x1_kxk_conv1 = None
        if hasattr(self, 'weight_rbr_1x1_kxk_idconv1'):
            weight_rbr_1x1_kxk_conv1 = (self.weight_rbr_1x1_kxk_idconv1 + self.id_tensor).squeeze()
        elif hasattr(self, 'weight_rbr_1x1_kxk_conv1'):
            weight_rbr_1x1_kxk_conv1 = self.weight_rbr_1x1_kxk_conv1.squeeze()
        else:
            raise NotImplementedError
        weight_rbr_1x1_kxk_conv2 = self.weight_rbr_1x1_kxk_conv2

        if self.groups > 1:
            g = self.groups
            t, ig = weight_rbr_1x1_kxk_conv1.size()
            o, tg, h, w = weight_rbr_1x1_kxk_conv2.size()
            weight_rbr_1x1_kxk_conv1 = weight_rbr_1x1_kxk_conv1.view(g, int(t/g), ig)
            weight_rbr_1x1_kxk_conv2 = weight_rbr_1x1_kxk_conv2.view(g, int(o/g), tg, h, w)
            weight_rbr_1x1_kxk = torch.einsum('gti,gothw->goihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2).view(o, ig, h, w)
        else:
            weight_rbr_1x1_kxk = torch.einsum('ti,othw->oihw', weight_rbr_1x1_kxk_conv1, weight_rbr_1x1_kxk_conv2)

        weight_rbr_1x1_kxk = torch.einsum('oihw,o->oihw', weight_rbr_1x1_kxk, self.vector[3, :])

        weight_rbr_gconv = self.dwsc2full(self.weight_rbr_gconv_dw, self.weight_rbr_gconv_pw, self.in_channels)
        weight_rbr_gconv = torch.einsum('oihw,o->oihw', weight_rbr_gconv, self.vector[4, :])    

        weight = weight_rbr_origin + weight_rbr_avg + weight_rbr_1x1_kxk + weight_rbr_pfir + weight_rbr_gconv

        return weight

    def dwsc2full(self, weight_dw, weight_pw, groups):
        
        t, ig, h, w = weight_dw.size()
        o, _, _, _ = weight_pw.size()
        tg = int(t/groups)
        i = int(ig*groups)
        weight_dw = weight_dw.view(groups, tg, ig, h, w)
        weight_pw = weight_pw.squeeze().view(o, groups, tg)
        
        weight_dsc = torch.einsum('gtihw,ogt->ogihw', weight_dw, weight_pw)
        return weight_dsc.view(o, i, h, w)

    def forward(self, inputs):
        weight = self.weight_gen()
        out = F.conv2d(inputs, weight, bias=None, stride=self.stride, padding=self.padding, dilation=self.dilation, groups=self.groups)

        return self.nonlinear(self.bn(out))

class RepVGGBlock_OREPA(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size,
                 stride=1, padding=None, groups=1, dilation=1, act=True, deploy=False, use_se=False):
        super(RepVGGBlock_OREPA, self).__init__()
        self.deploy = deploy
        self.groups = groups
        self.in_channels = in_channels
        self.out_channels = out_channels

        padding = autopad(kernel_size, padding, dilation)
        self.padding = padding
        self.dilation = dilation
        self.groups = groups

        assert kernel_size == 3
        assert padding == 1

        self.nonlinearity = Conv.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

        if use_se:
            self.se = SEAttention(out_channels, reduction=out_channels // 16)
        else:
            self.se = nn.Identity()

        if deploy:
            self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
                                      padding=padding, dilation=dilation, groups=groups, bias=True)

        else:
            self.rbr_identity = nn.BatchNorm2d(num_features=in_channels) if out_channels == in_channels and stride == 1 else None
            self.rbr_dense = OREPA_3x3_RepVGG(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, dilation=1)
            self.rbr_1x1 = ConvBN(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride, groups=groups, dilation=1)

    def forward(self, inputs):
        if hasattr(self, 'rbr_reparam'):
            return self.nonlinearity(self.se(self.rbr_reparam(inputs)))

        if self.rbr_identity is None:
            id_out = 0
        else:
            id_out = self.rbr_identity(inputs)

        out1 = self.rbr_dense(inputs)
        out2 = self.rbr_1x1(inputs)
        out3 = id_out
        out = out1 + out2 + out3

        return self.nonlinearity(self.se(out))


    #   Optional. This improves the accuracy and facilitates quantization.
    #   1.  Cancel the original weight decay on rbr_dense.conv.weight and rbr_1x1.conv.weight.
    #   2.  Use like this.
    #       loss = criterion(....)
    #       for every RepVGGBlock blk:
    #           loss += weight_decay_coefficient * 0.5 * blk.get_cust_L2()
    #       optimizer.zero_grad()
    #       loss.backward()

    # Not used for OREPA
    def get_custom_L2(self):
        K3 = self.rbr_dense.weight_gen()
        K1 = self.rbr_1x1.conv.weight
        t3 = (self.rbr_dense.bn.weight / ((self.rbr_dense.bn.running_var + self.rbr_dense.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()
        t1 = (self.rbr_1x1.bn.weight / ((self.rbr_1x1.bn.running_var + self.rbr_1x1.bn.eps).sqrt())).reshape(-1, 1, 1, 1).detach()

        l2_loss_circle = (K3 ** 2).sum() - (K3[:, :, 1:2, 1:2] ** 2).sum()      # The L2 loss of the "circle" of weights in 3x3 kernel. Use regular L2 on them.
        eq_kernel = K3[:, :, 1:2, 1:2] * t3 + K1 * t1                           # The equivalent resultant central point of 3x3 kernel.
        l2_loss_eq_kernel = (eq_kernel ** 2 / (t3 ** 2 + t1 ** 2)).sum()        # Normalize for an L2 coefficient comparable to regular L2.
        return l2_loss_eq_kernel + l2_loss_circle

    def get_equivalent_kernel_bias(self):
        kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
        kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
        kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
        return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid

    def _pad_1x1_to_3x3_tensor(self, kernel1x1):
        if kernel1x1 is None:
            return 0
        else:
            return torch.nn.functional.pad(kernel1x1, [1,1,1,1])

    def _fuse_bn_tensor(self, branch):
        if branch is None:
            return 0, 0
        if not isinstance(branch, nn.BatchNorm2d):
            if isinstance(branch, OREPA_3x3_RepVGG):
                kernel = branch.weight_gen()
            elif isinstance(branch, ConvBN):
                kernel = branch.conv.weight
            else:
                raise NotImplementedError
            running_mean = branch.bn.running_mean
            running_var = branch.bn.running_var
            gamma = branch.bn.weight
            beta = branch.bn.bias
            eps = branch.bn.eps
        else:
            if not hasattr(self, 'id_tensor'):
                input_dim = self.in_channels // self.groups
                kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
                for i in range(self.in_channels):
                    kernel_value[i, i % input_dim, 1, 1] = 1
                self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
            kernel = self.id_tensor
            running_mean = branch.running_mean
            running_var = branch.running_var
            gamma = branch.weight
            beta = branch.bias
            eps = branch.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta - running_mean * gamma / std

    def switch_to_deploy(self):
        if hasattr(self, 'rbr_reparam'):
            return
        kernel, bias = self.get_equivalent_kernel_bias()
        self.rbr_reparam = nn.Conv2d(in_channels=self.rbr_dense.in_channels, out_channels=self.rbr_dense.out_channels,
                                     kernel_size=self.rbr_dense.kernel_size, stride=self.rbr_dense.stride,
                                     padding=self.rbr_dense.padding, dilation=self.rbr_dense.dilation, groups=self.rbr_dense.groups, bias=True)
        self.rbr_reparam.weight.data = kernel
        self.rbr_reparam.bias.data = bias
        for para in self.parameters():
            para.detach_()
        self.__delattr__('rbr_dense')
        self.__delattr__('rbr_1x1')
        if hasattr(self, 'rbr_identity'):
            self.__delattr__('rbr_identity')

class Bottleneck_REPVGGOREPA(Bottleneck):
    """Standard bottleneck with DCNV2."""

    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):  # ch_in, ch_out, shortcut, groups, kernels, expand
        super().__init__(c1, c2, shortcut, g, k, e)
        c_ = int(c2 * e)  # hidden channels
        if k[0] == 1:
            self.cv1 = Conv(c1, c_, 1)
        else:
            self.cv1 = RepVGGBlock_OREPA(c1, c_, 3)
        
        self.cv2 = RepVGGBlock_OREPA(c_, c2, 3, groups=g)

class C3_REPVGGOREPA(C3):
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        c_ = int(c2 * e)  # hidden channels
        self.m = nn.Sequential(*(Bottleneck_REPVGGOREPA(c_, c_, shortcut, g, k=(1, 3), e=1.0) for _ in range(n)))

class C2f_REPVGGOREPA(C2f):
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        super().__init__(c1, c2, n, shortcut, g, e)
        self.m = nn.ModuleList(Bottleneck_REPVGGOREPA(self.c, self.c, shortcut, g, k=(3, 3), e=1.0) for _ in range(n))

2.2 C2f_REPVGGOREPA的神经网络模块代码解析

这段代码定义了一个名为 C2f_REPVGGOREPA 的自定义神经网络模块类,它继承自另一个类 C2f。以下是对该代码的详细解析:

1. 类的定义与继承

class C2f_REPVGGOREPA(C2f):
  • C2f_REPVGGOREPA 继承自 C2f 类,这意味着 C2f_REPVGGOREPA 将拥有 C2f 的所有属性和方法,但可以重写或扩展这些属性和方法。

  • C2f 是父类,它可能定义了一些基础的神经网络结构或功能。

2. 初始化方法

def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
    super().__init__(c1, c2, n, shortcut, g, e)
  • __init__ 是初始化方法,当创建 C2f_REPVGGOREPA 类的实例时会自动调用。

  • c1c2 可能表示输入和输出的通道数,n 表示模块重复的次数,shortcut 是是否使用残差连接的标志,g 可能是组卷积的组数,e 可能表示扩展因子。

  • super().__init__(c1, c2, n, shortcut, g, e) 调用了父类 C2f 的初始化方法,确保 C2f_REPVGGOREPA 继承父类的初始化逻辑。

3. 模块列表

self.m = nn.ModuleList(Bottleneck_REPVGGOREPA(self.c, self.c, shortcut, g, k=(3, 3), e=1.0) for _ in range(n))
  • self.m 是一个 nn.ModuleList,用于存储一系列神经网络层或模块。

  • Bottleneck_REPVGGOREPA 是一个自定义的模块(实现了REPVGG和OREPA方法的瓶颈层),每个模块的输入和输出通道数都是 self.cshortcutgk=(3, 3) 是这个模块的参数,其中 k=(3, 3) 可能表示使用的卷积核大小为 3x3,e=1.0 表示扩展因子。

  • for _ in range(n) 表示创建 nBottleneck_REPVGGOREPA 模块并将它们添加到 self.m 中,n 是初始化方法中的参数。

4. 总结

C2f_REPVGGOREPA 类是一个自定义神经网络模块,继承自 C2f。在这个类中,它使用了 Bottleneck_REPVGGOREPA 模块,并通过 nn.ModuleList 将多个这样的模块组合在一起。这种设计允许通过重复使用 Bottleneck_REPVGGOREPA 模块来构建更深的神经网络结构,同时继承并扩展了 C2f 类的功能。

2.3 更改init.py文件

关键步骤二:修改modules文件夹下的__init__.py文件,先导入函数    

然后在下面的__all__中声明函数 

2.4 添加yaml文件

关键步骤三:在/ultralytics/ultralytics/cfg/models/v8下面新建文件yolov8_C2f_REPVGGOREPA.yaml文件,粘贴下面的内容

  • OD【目标检测】
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f_REPVGGOREPA, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f_REPVGGOREPA, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f_REPVGGOREPA, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f_REPVGGOREPA, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f_REPVGGOREPA, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f_REPVGGOREPA, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f_REPVGGOREPA, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f_REPVGGOREPA, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)
  • Seg【语义分割】
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f_REPVGGOREPA, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f_REPVGGOREPA, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f_REPVGGOREPA, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f_REPVGGOREPA, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f_REPVGGOREPA, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f_REPVGGOREPA, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f_REPVGGOREPA, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f_REPVGGOREPA, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Segment, [nc, 32, 256]] # Segment(P3, P4, P5)

温馨提示:因为本文只是对yolov8基础上添加模块,如果要对yolov8n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。不明白的同学可以看这篇文章: yolov8yaml文件解读——点击即可跳转  


# YOLOv8n
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
max_channels: 1024 # max_channels
 
# YOLOv8s
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
max_channels: 1024 # max_channels
 
# YOLOv8l 
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
max_channels: 512 # max_channels
 
# YOLOv8m
depth_multiple: 0.67  # model depth multiple
width_multiple: 0.75  # layer channel multiple
max_channels: 768 # max_channels
 
# YOLOv8x
depth_multiple: 1.33  # model depth multiple
width_multiple: 1.25  # layer channel multiple
max_channels: 512 # max_channels

2.5 注册模块

关键步骤四:在task.py的parse_model函数中注册

2.6 执行程序

在train.py中,将model的参数路径设置为yolov8_C2f_REPVGGOREPA.yaml的路径

建议大家写绝对路径,确保一定能找到

from ultralytics import YOLO
import warnings
warnings.filterwarnings('ignore')
from pathlib import Path
 
if __name__ == '__main__':
 
 
    # 加载模型
    model = YOLO("ultralytics/cfg/v8/yolov8.yaml")  # 你要选择的模型yaml文件地址
    # Use the model
    results = model.train(data=r"你的数据集的yaml文件地址",
                          epochs=100, batch=16, imgsz=640, workers=4, name=Path(model.cfg).stem)  # 训练模型

    🚀运行程序,如果出现下面的内容则说明添加成功🚀 

                   from  n    params  module                                       arguments
  0                  -1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  1                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  2                  -1  1     20736  ultralytics.nn.modules.block.C2f_REPVGGOREPA [32, 32, 1, True]
  3                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  4                  -1  2    146176  ultralytics.nn.modules.block.C2f_REPVGGOREPA [64, 64, 2, True]
  5                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  6                  -1  2    562688  ultralytics.nn.modules.block.C2f_REPVGGOREPA [128, 128, 2, True]
  7                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  8                  -1  1   1169408  ultralytics.nn.modules.block.C2f_REPVGGOREPA [256, 256, 1, True]
  9                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 11             [-1, 6]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 12                  -1  1    330752  ultralytics.nn.modules.block.C2f_REPVGGOREPA [384, 128, 1]
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 14             [-1, 4]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 15                  -1  1     85504  ultralytics.nn.modules.block.C2f_REPVGGOREPA [192, 64, 1]
 16                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 17            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 18                  -1  1    306176  ultralytics.nn.modules.block.C2f_REPVGGOREPA [192, 128, 1]
 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 20             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 21                  -1  1   1202176  ultralytics.nn.modules.block.C2f_REPVGGOREPA [384, 256, 1]
 22        [15, 18, 21]  1    897664  ultralytics.nn.modules.head.Detect           [80, [64, 128, 256]]
YOLOv8_C2f_REPVGGOREPA summary: 345 layers, 5463696 parameters, 5463680 gradients, 6.8 GFLOPs

3. 完整代码分享

https://pan.baidu.com/s/1PPV4wsq2R89EesnA780fGg?pwd=p27f

 提取码: p27f 

4. GFLOPs

关于GFLOPs的计算方式可以查看百面算法工程师 | 卷积基础知识——Convolution

未改进的YOLOv8nGFLOPs

img

改进后的GFLOPs

5. 进阶

可以与其他的注意力机制或者损失函数等结合,进一步提升检测效果

6. 总结

OREPA的主要原理在于通过在线卷积重参数化(Online Convolutional Re-parameterization)优化了传统结构重参数化方法的训练效率。在训练阶段,OREPA首先移除了复杂训练块中的非线性标准化层,替换为线性缩放层,从而保持了各分支优化方向的多样性,同时简化了结构。然后,OREPA将这些线性化的块在训练过程中进一步压缩为单个卷积核,从而显著降低了计算和存储开销。这一过程不仅大幅度减少了训练成本,还保留了模型的高表现力,使得在推理阶段能够实现高效且精准的模型部署。这种方法特别适用于需要在有限计算资源下执行的场景,如实时推理任务。

  • 14
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kay_545

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值