动态规划入门例题:

该文章介绍了一种解决寻找数组中最大连续数列总和的问题的算法,通过遍历数组,维护当前和与最大和,每次判断当前元素是否应作为新序列的起点,更新最大和。代码实现的时间复杂度为O(n)。
摘要由CSDN通过智能技术生成

   按照题目描述所说:要找出总和最大的连续数列,并返回总和。我们不难发现,当插入一个a[i]时,最大的连续数列有两种可能,一种是它自己作为一种连续数列的开头,可以将其这种数记为Qi,第二种是与Qi-1到a[i]形成一段新的最大连续数列,我们可以将这一段数列的总和表示为SUM(Qi-1,a[i])。所以,最大一段连续数列的总和为Max(Qi,SUM(Qi-1,a[i]))。据此,可以写出如下时间复杂度为O(n)的代码。

  具体的代码实现:

class Solution {

    public int maxSubArray(int[] nums) {

        int sum=nums[0];

        int max=nums[0];

       for(int i=1;i<nums.length;i++)

       {

           if(sum+nums[i]<=nums[i]) //自身作为最大数列的开头

           sum=nums[i];

           else

           sum=sum+nums[i]; //不是的话,从上一个最大数列的开头进行累加

           if(sum>max)  //假如大于当前最大总和的话,将max赋值成sum

           {

            max=sum;

           }

       }

       return max;

    }

}

运行结果:

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值