岭回归和lasso回归

岭回归和lasso回归
在 OLS 回归模型的损失函数上加入了不同的惩罚项,本质就是正则化。

(1) 古典回归模型

1. 线性假定

  • 矩阵表示 y = X β + ϵ \boldsymbol{y}=X\boldsymbol{\beta}+\boldsymbol{\epsilon} y=Xβ+ϵ
  • 其中 y = ( y 1 , y 2 , … , y n ) T \boldsymbol{y}=(y_1,y_2,\dots,y_n)^T y=(y1,y2,,yn)T β = ( β 1 , β 2 , … , β n ) T \boldsymbol{\beta}=(\beta_1,\beta_2,\dots,\beta_n)^T β=(β1,β2,,βn)T ϵ = ( ϵ 1 , ϵ 2 , … , ϵ n ) T \boldsymbol{\epsilon}=(\epsilon_1,\epsilon_2,\dots,\epsilon_n)^T ϵ=(ϵ1,ϵ2,,ϵn)T
    X = [ x 11 x 12 ⋯ x 1 p x 21 x 22 ⋯ x 2 p ⋮ ⋮ ⋱ ⋮ x n 1 x n 2 ⋯ x n p ] X=\left[ \begin{matrix} x_{11}&x_{12}&\dotsb&x_{1p}\\ x_{21}&x_{22}&\dotsb&x_{2p}\\ \vdots&\vdots&\ddots&\vdots\\ x_{n1}&x_{n2}&\dotsb&x_{np}\\ \end{matrix} \right] X=x11x21xn1x12x22xn2x1px2pxnp

2. 严格外生性

保证估计出来的回归系数无偏且一致

E ( ϵ i ∣ X ) = 0    ( i = 1 , 2 , … , n ) E(\epsilon_i|X)=0~~(i=1,2,\dots,n) E(ϵiX)=0  (i=1,2,,n)
由上式得出的结论:

  • E ( ϵ i ) = 0 E(\epsilon_i)=0 E(ϵi)=0  迭代期望定理: E ( E ( ϵ i ∣ X ) ) = E ( ϵ i ) E(E(\epsilon_i|X))=E(\epsilon_i) E(E(ϵiX))=E(ϵi)
  • C o v ( ϵ i , x j k ) = 0    ( i = 1 , 2 , … , n , j = 1 , 2 , … , n , k = 1 , 2 , … , p ) Cov(\epsilon_i,x_{jk})=0~~(i=1,2,\dots,n,j=1,2,\dots,n,k=1,2,\dots,p) Cov(ϵi,xjk)=0  (i=1,2,,n,j=1,2,,n,k=1,2,,p) 即所有的自变量都与扰动项不相关。
    E ( ϵ i ∣ x j k ) = E [ E ( ϵ i ∣ X ) ∣ x j k ] = 0 E ( x j k ϵ i ) = E [ E ( x j k ϵ i ∣ x j k ) ] = E [ x j k E ( ϵ i ∣ x j k ) ] = 0    ( 条 件 期 望 的 线 性 性 质 为 E [ f ( x ) y ∣ x ] = f ( x ) E ( y ∣ x ) ) C o v ( ϵ i , x j k ) = E ( ϵ i x j k ) − E ( ϵ i ) E ( x j k ) = E ( ϵ i x j k ) = 0 \begin{aligned} E(\epsilon_i|x_{jk})&=E[E(\epsilon_i|X)|x_{jk}]=0\\ E(x_{jk}\epsilon_i)&=E[E(x_{jk}\epsilon_i|x_{jk})]=E[x_{jk}E(\epsilon_i|x_{jk})]=0~~ (条件期望的线性性质为E[f(\boldsymbol{x}) y|\boldsymbol{x}]=f(\boldsymbol{x})E(y|\boldsymbol{x}))\\ Cov(\epsilon_i,x_{jk})&=E(\epsilon_ix_{jk})-E(\epsilon_i)E(x_{jk})\\ &=E(\epsilon_ix_{jk})\\ &=0 \end{aligned} E(ϵixjk)E(xjkϵi)Cov(ϵi,xjk)=E[E(ϵiX)xjk]=0=E[E(xjkϵixjk)]=E[xjkE(ϵixjk)]=0  (线E[f(x)yx]=f(x)E(yx))=E(ϵixjk)E(ϵi)E(xjk)=E(ϵixjk)=0

3. 无完全多重共线性

保证能估计出来

  • R ( X n × p ) = p R(X_{n\times p})=p R(Xn×p)=p 保证数据矩阵的秩为 p p p
  • 得到结论
    • n ≥ p n\ge p np
    • R ( X T X ) = R ( X ) = p R(X^TX)=R(X)=p R(XTX)=R(X)=p,说明 X T X X^TX XTX 一定可逆。

4. 误差的球面方差

  • 同方差: E ( ϵ i 2 ∣ X ) = σ 2 > 0    ( i = 1 , 2 , … , n ) E(\epsilon_i^2|X)=\sigma^2>0~~(i=1,2,\dots,n) E(ϵi2X)=σ2>0  (i=1,2,,n)
  • 观测值的无相关: E ( ϵ i ϵ j ∣ X ) = 0    ( i , j = 1 , 2 , … , n ; i ≠ j ) E(\epsilon_i\epsilon_j|X)=0~~(i,j=1,2,\dots,n;i\not ={j}) E(ϵiϵjX)=0  (i,j=1,2,,n;i=j)

(2) 岭回归和lasso回归

1. 基本的线性回归

β ^ = ( β ^ 1 , β ^ 2 , … , β ^ n ) T \boldsymbol{\hat{\beta}}=(\hat{\beta}_1,\hat{\beta}_2,\dots,\hat{\beta}_n)^T β^=(β^1,β^2,,β^n)T

  • 多元性线性回归: β ^ = arg min ⁡ β ^ ∑ i = 1 n ( y i − x i T β ^ ) 2 \boldsymbol{\hat{\beta}}=\argmin_{\boldsymbol{\hat{\beta}}}\sum_{i=1}^n(y_i-x_i^T\boldsymbol{\hat{\beta}})^2 β^=β^argmini=1n(yixiTβ^)2

2. 岭回归 (附加一个二范数)

  • 岭回归: β ^ = arg min ⁡ β ^ [ ∑ i = 1 n ( y i − x i T β ^ ) 2 + λ ∑ k = 1 n β ^ i 2 ] = arg min ⁡ β ^ [ ( y − X β ^ ) T ( y − X β ^ ) + λ β ^ T β ^ ] = ( X T X + λ I ) − 1 X T y \begin{aligned} \boldsymbol{\hat{\beta}}&=\argmin_{\boldsymbol{\hat{\beta}}}[\sum_{i=1}^n(y_i-x_i^T\boldsymbol{\hat{\beta}})^2+\lambda\sum_{k=1}^n\hat{\beta}_i^2]\\ &=\argmin_{\hat{\beta}}[(\boldsymbol{y}-X\boldsymbol{\hat{\beta}})^T(\boldsymbol{y}-X\boldsymbol{\hat{\beta}})+\lambda\boldsymbol{\hat{\beta}}^T\boldsymbol{\hat{\beta}}]\\ &=(X^TX+\lambda \boldsymbol{I})^{-1}X^T\boldsymbol{y} \end{aligned} β^=β^argmin[i=1n(yixiTβ^)2+λk=1nβ^i2]=β^argmin[(yXβ^)T(yXβ^)+λβ^Tβ^]=(XTX+λI)1XTy

⭐️确定 λ \lambda λ 的方法

  • 岭迹分析
    λ \lambda λ 0 → ∞ 0\rightarrow \infin 0 时得到的 β ^ \hat{\boldsymbol{\beta}} β^ 中各个分量的变化曲线(岭迹图),将 λ \lambda λ 选取在各回归系数相对稳定,符号合理,并且残差平方和增加不太多处,选取的主观成分比较多。
  • VIF 方法
    已经知道当 max ⁡ V I F i > 10 \max {\bf VIF_i } >10 maxVIFi>10 存在严重的多重共线性,因此可以不断增加 λ \lambda λ 最终保证所有的 β ^ i \hat{\beta}_i β^iVIF < 10 <10 <10
  • K 折交叉验证 方法
    将样本数据随机分为 K K K 等分,依次选取子样本 a i a_i ai 作为验证集,每次选取一个,并将剩下的 K − 1 K-1 K1 个子样本 a 1 , a 2 , … , a i − 1 , a i + 1 , … , a K a_1,a_2,\dots,a_{i-1},a_{i+1},\dots,a_K a1,a2,,ai1,ai+1,,aK 作为训练集来预测 a i a_i ai ,并计算出 M S E i \bf MSE_i MSEi,最终求解 arg min ⁡ λ ∑ i = 1 K M S E i \argmin_\lambda\sum_{i=1}^K{\bf MSE_i} λargmini=1KMSEi

3. Lasso 回归 (附加一个一范数)

  • Lasso 回归
    β ^ = arg min ⁡ β ^ [ ∑ i = 1 n ( y i − x i T β ^ ) 2 + λ ∑ k = 1 n ∣ β ^ i ∣ ] \boldsymbol{\hat{\beta}}=\argmin_{\boldsymbol{\hat{\beta}}}[\sum_{i=1}^n(y_i-x_i^T\boldsymbol{\hat{\beta}})^2+\lambda\sum_{k=1}^n|\hat{\beta}_i|] β^=β^argmin[i=1n(yixiTβ^)2+λk=1nβ^i]
    ⭐️ 无显示解,只能使用近似估计算法,但相比于岭回归,好在可以将不需要的变量的回归系数直接压缩至 0。
  • STATA
    • 下载对应的包findit lassopack
    • cvlasso A1 A2...At,lopt seed(number),number可以自己选择一个数填入,选取不同的数得到的结果不同。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值