河南大学-机器学习-SVM-实验报告6

本文介绍了如何使用Python的sklearn库实现支持向量机(SVM)算法,包括随机样本的二分类、线性SVM的应用以及对葡萄酒数据集进行分类时不同核函数的性能评估。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

实验目的

  1. 掌握支持向量机SVM算法原理;
  2. 编程实现SVM算法,并进行样本数据二分类

实验内容

1.使用sklearn的SVM算法对样本数据进行分类,要求:

(1)使用sklearn生成随机分布的400个样本点;

(2)对样本点进行显示;

(3)使用线性SVM进行二分类;

(4)评价模型并画出分类边界

2.使用sklearn中SVM算法对葡萄酒数据集进行分类,要求:

(1)对数据集进行分割,20%用于测试;

(2)对核函数进行选择(linear、poly、rbf、sigmod),比较不同核函数的分类精度。

实验代码

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

# 生成随机分布的400个样本点
X, y = make_blobs(n_samples=400, centers=2, random_state=42)

# 显示样本点
plt.figure(figsize=(8, 6))
plt.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis', edgecolors='k')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Randomly Generated Sample Data')
plt.colorbar()
plt.show()

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 使用线性SVM进行二分类
svm_model = SVC(kernel='linear', random_state=42)
svm_model.fit(X_train, y_train)

# 评价模型
y_pred = svm_model.predict(X_test)
print(classification_report(y_test, y_pred))

# 画出分类边界
plt.figure(figsize=(8, 6))
plt.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis', edgecolors='k')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Linear SVM Classification')
plt.colorbar()

# 画出决策边界
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()

xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
Z = svm_model.decision_function(xy).reshape(XX.shape)

ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--'])
ax.scatter(svm_model.support_vectors_[:, 0], svm_model.support_vectors_[:, 1], s=100, linewidth=1, facecolors='none', edgecolors='k')
plt.show()

 

import numpy as np
import pandas as pd
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score

# 加载葡萄酒数据集
wine = load_wine()
X = wine.data
y = wine.target

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 定义不同核函数的SVM模型
kernels = ['linear', 'poly', 'rbf', 'sigmoid']
for kernel in kernels:
    svm_model = SVC(kernel=kernel)
    svm_model.fit(X_train, y_train)
    y_pred = svm_model.predict(X_test)
    acc = accuracy_score(y_test, y_pred)
    print(f"Kernel: {kernel}, Accuracy: {acc}")

### 关于河南大学机器学习课程复习资料 对于准备河南大学机器学习课程考试的学生来说,获取高质量的复习材料至关重要。虽然特定于河南大学的资源可能有限,但可以借鉴其他高校公开的教学资源来辅助备考。 #### 推荐的学习平台和资源 - **Coursera 和 edX** 提供由顶尖院校开设的机器学习在线课程,这些平台上不仅有视频讲座还有配套作业可以帮助理解知识点[^1]。 - **GitHub 上开源项目** 许多学生会在 GitHub 分享自己整理的知识点总结、编程实践案例等,通过搜索 `machine learning notes` 或者更具体的关键词如 `HaNDU machine learning exam preparation` 可能会找到有用的笔记。 #### 重要概念回顾 为了更好地应对考试,建议重点关注以下几个方面: - **监督学习 vs 非监督学习**: 明确两者区别及其应用场景是非常重要的基础理论之一[^4]。 - **算法实现细节**: 如线性回归、决策树、支持向量机(SVM)等经典模型的工作原理及Python代码实现。 ```python from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC # 加载鸢尾花数据集作为例子 iris = datasets.load_iris() X, y = iris.data[:, [2, 3]], iris.target # 数据分割成训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) scaler = StandardScaler().fit(X_train) X_train_std = scaler.transform(X_train) X_test_std = scaler.transform(X_test) clf = SVC(kernel='linear', C=1).fit(X_train_std, y_train) print(f'Accuracy on training set: {clf.score(X_train_std, y_train)}') print(f'Accuracy on testing set: {clf.score(X_test_std, y_test)}') ``` #### 实践练习 利用Kaggle竞赛平台上的小型项目来进行实战演练,这有助于加深对所学知识的理解并提高解决实际问题的能力[^3]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值