【本地大模型联网保姆级教程】Ollama+Open WebUI 实现本地大模型联网搜索:可视化操作全解析

前言:无需编程,让本地大模型“联网冲浪”

你是否遇到过这些问题? 

  1. 本地部署的大模型回答“今日天气”时总是胡言乱语 ❌ 
  2. 想获取最新行业报告,却要手动复制网页内容 ❌ 
  3. 担心代码编写复杂,迟迟不敢尝试联网功能 ❌ 

本教程教你零代码实现本地大模型联网! 通过 Ollama 管理模型 + Open WebUI 可视化界面 + 博查AI搜索API,只需鼠标点击即可让模型实时获取最新信息! 

一、技术架构:开箱即用的解决方案

1.1 核心组件

工具

作用

优势

Ollama

本地大模型管理工具

一键下载/运行主流模型

Open WebUI

可视化聊天界面

零代码配置/多模型切换

博查AI搜索API

实时联网数据源

中文精准/多模态支持/合规安全

 

1.2 工作流程

用户提问 → Open WebUI 发送请求 → Ollama 调用本地模型 → 自动触发博查API搜索 → 返回增强答案 

二、环境搭建:10分钟快速部署

2.1 安装Ollama(模型管理工具)

步骤1:一键安装 

  1. Windows/macOS:访问[Ollama官网](https://ollama.com)下载安装包,双击运行。 
  2. Linux:终端执行以下命令: 

  bash 

  curl -fsSL https://ollama.com/install.sh | sh  

步骤2:验证安装

打开终端输入 `ollama --version`,显示版本号即成功(如 `Ollama version 0.1.20`)。 

2.2 部署本地大模型

  1. 打开终端,执行以下命令下载模型(以ChatGLM3-6B为例): 

   bash 

   ollama pull chatglm3-6b 

  

  1.  运行模型: 

   bash 

   ollama run chatglm3-6b 

  1. 可以看到以下界面:


三、配置Open WebUI:可视化操作指南

3.1 一键部署Open WebUI

  1. 使用pip一键安装

bash

pip install open-webui

  1. 运行OpenWebui

bash

open-webui serve

  1. 看到下面的界面就表示运行成功,安装后,您可以访问 Open WebUI at http://localhost:8080

3.2 初始化设置

1. 创建管理员账号:首次访问时输入邮箱和密码完成注册。 

2. 切换中文界面: 

   - 点击左下角「管理员面板」→「Settings」→「General」→「Language」→ 选择「简体中文」。 

四、集成博查API:联网搜索配置

4.1 获取博查API密钥

  1. 访问[博查AI开放平台](https://open.bochaai.com)并注册账号。 
  2. 进入「API Key管理」→ 点击「创建密钥」,复制生成的 `sk-xxxxxx` 密钥。 

4.2 配置联网搜索功能

在Open WebUI中进入「管理员面板」→「设置」→「联网搜索」: 

  1. 启用「联网搜索」开关 
  2. 选择搜索引擎为「Bocha」 
  3. 粘贴博查API密钥 
  4. 点击「保存」 

五、使用示例:零代码实现智能问答

5.1 基础搜索:实时天气查询

1.  在聊天界面输入:“今天北京天气如何?” 

2.  勾选「启用联网搜索」复选框 → 发送消息 

3.  系统自动执行: 

  1. 调用博查API获取实时天气数据 
  2. 本地模型整合数据生成答案 

输出结果: 


5.2 专业领域:最新行业报告

1. 输入:“2024年人工智能发展趋势有哪些?” 

2. 启用联网搜索 → 发送消息 

3. 系统自动: 

  1. 检索权威机构发布的白皮书 
  2. 提取关键数据生成总结 

输出结果: 


 

六、常见问题与解决方案

6.1 联网搜索返回空结果

检查点:  

  1. 博查API密钥是否有效 
  2. 网络连接是否正常 
  3. 搜索关键词是否过于模糊 

6.2 模型加载失败

解决方案:  

  bash 

  # 重新拉取模型 

  ollama rm chatglm3-6b 

  ollama pull chatglm3-6b 

总结

核心价值:

  1. 零代码:全程无需编写一行代码 
  2. 实时性:分钟级获取最新网络信息 
  3. 安全性:数据全程加密,符合国内合规要求 

推荐资源

  1. [Ollama官方文档](https://ollama.com/docs) 
  2. [博查API接入指南](https://docs.bochaai.com) 
  3. [Open WebUI社区支持](https://github.com/open-webui/open-webui/discussions) 

立即行动:  

  1. [下载Ollama](https://ollama.com) 
  2. [领取博查API免费额度](https://open.bochaai.com) 
  3. 开启你的智能问答系统之旅! 
### 实现本地大规模模型与百度搜索引擎的集成 为了使本地部署的大规模语言模型能够通过百度搜索引擎执行在线查询,通常需要构建一个中间层服务作为桥梁。该服务负责接收来自用户的请求,调用本地模型处理自然语言理解(NLU)部分的任务,并利用解析后的意图和实体信息向百度发送HTTP GET/POST请求获取搜索结果。 #### 构建API接口用于交互 创建RESTful API端点以便前端应用程序或其他客户端可以提交待解析文本字符串给后端服务器上的大型预训练模型实例化环境。此过程涉及定义清晰的数据交换格式如JSON对象来封装输入参数以及预期返回值结构[^1]。 ```json { "query": "人工智能的发展趋势" } ``` 对于上述示例中的`query`字段即代表用户想要询问的内容,在接收到这样的请求之后,内部逻辑会先经过NLP模块完成初步的理解工作——比如识别主题类别、提取关键词汇等操作;随后再依据这些线索拼凑成适合于Web爬虫抓取的信息检索表达式[^2]。 #### 使用Python代码示例说明 下面给出了一段简单的Flask框架下的路由函数片段,它展示了如何接受外部传入的消息体并通过requests库发起针对特定URL模式(这里假设为简化版)的实际访问动作: ```python from flask import Flask, request, jsonify import requests app = Flask(__name__) @app.route('/search', methods=['POST']) def search(): data = request.get_json() query_text = data['query'] # 调用本地LLM进行文本理解和处理 processed_query = process_with_local_model(query_text) baidu_search_url = f"https://www.baidu.com/s?wd={processed_query}" response = requests.get(baidu_search_url) return jsonify({"status": "success", "data": response.text}) if __name__ == '__main__': app.run(debug=True) ``` 这段程序里包含了几个重要环节:一是对接口数据包内有效载荷(`payload`)中携带的关键字串做进一步加工转换;二是构造指向目标站点资源定位符(URI),最后则是运用第三方工具类库去同步加载远程页面源码并反馈给调用方[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值