最优化方法实验五--数据拟合

 实验目的与要求

1.掌握求解最小二乘法约束问题思路;

2.掌握建立数据拟合的优化模型;

3.掌握数学符号描述问题,设计算法求解模型。

 问题

模型建立求解

解决问题思路,算法实现描述,误差分析,存在问题方面进行阐述。

1、定理、定义引入

Gram矩阵的定义:

若矩阵B=A^{T}A,则B为Gram矩阵。每个Gram矩阵都是半正定的,即

                               \forall x:x^{T}Bx=x^{T}A^{T}Ax=\left \| Ax \right \|_{2}^{2}\geq 0

若要使Gram矩阵为正定的,则要满足:

                            \forall x\neq 0:x^{T}Bx=x^{T}A^{T}Ax=\left \| Ax \right \|_{2}^{2}> 0

即A是列向量无关的。正定矩阵都是非奇异的。

定理1:设函数f(x)\hat{x}处可微,则\triangledown f(\hat{x})=0\hat{x}=\underset{x\in R^{n}}{argmin}f(x)的必要条件

证明:将函数f(x)在\hat{x}处一阶泰勒展开,有:

                       f(x)=f(\hat{x})+\left \langle \triangledown f(\hat{x}),x-\hat{x} \right \rangle+o(\left \| x-\hat{x} \right \|_{2})

\tilde{x}=\hat{x}-t\triangledown f(\hat{x})t> 0,可得:

                         f(\tilde{x})=f(\hat{x})-t\left \| \triangledown f(\hat{x}) \right \|_{2}^{2}+o(t\left \| \triangledown f(\hat{x}) \right \|_{2})

t\rightarrow 0,则t\left \| \triangledown f(\hat{x}) \right \|_{2}^{2}\rightarrow 0o(t\left \| \triangledown f(\hat{x}) \right \|_{2})\rightarrow 0,当t足够小,存在t\left \| \triangledown f(\hat{x}) \right \|_{2}> o(t\left \| \triangledown f(\hat{x}) \right \|_{2}),即:

                               -t\left \| \triangledown f(\hat{x}) \right \|_{2}>+o(t\left \| \triangledown f(\hat{x}) \right \|_{2})<0

\triangledown f(\hat{x})\neq 0,则:f(\tilde{x})=f(\hat{x})-t\left \| \triangledown f(\hat{x}) \right \|_{2}^{2}+o(t\left \| \triangledown f(\hat{x}) \right \|_{2})<f(\hat{x}),与\hat{x}=\underset{x\in R^{n}}{argmin}f(x)矛盾,所以\triangledown f(\hat{x})=0得证。

\triangledown f(\hat{x})=0是最优解问题\hat{x}=\underset{x\in R^{n}}{argmin}f(x)的必要条件但不是充分条件,因为\triangledown f(\hat{x})=0时,f(\hat{x})有可能是最大值,故引入定理2:

定理2:若可微函数f(x)是凸函数,则\triangledown f(\hat{x})=0\hat{x}=\underset{x\in R^{n}}{argmin}f(x)的充要条件

定理1已证必要条件,现证充分条件,即\triangledown f(\hat{x})=0\Rightarrow \hat{x}=\underset{x\in R^{n}}{argmin}f(x):由于f(x)是可微且凸的,则\forall x\in R^{n},有:f(x)\geq f(\hat{x})+\left \langle \triangledown f(\hat{x}),x-\hat{x} \right \rangle\geq f(\hat{x})\hat{x}=\underset{x\in R^{n}}{argmin}f(x)得证。

2、带约束条件的最小范数优化问题

对于有约束的优化问题,因为既有目标函数又要考虑约束条件,常常比较难以直接求解。如果能够将其转换为一个目标函数。拉格朗日子乘法是一种常见的求解方法,可以将一般约束问题转化为等价的单个目标函数从而方便求解

3、模型建立

4、模型求解

5、数据拟合

  • 6
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值