一、 实验目的与要求
1.熟练最小二乘法优化模型的意义和求解手段;
2.掌握最小二乘法的正规方程,能实现代码对其求解;
3.掌握最速梯度下降法求解无约束最小二乘法问题。
二、 问题
三、模型建立及求解
解决问题思路,模型建立、性能分析,存在问题等方面进行阐述;梯度下降法迭代求解,可以设置迭代次数或相邻迭代解之间“相对接近程度”,如,作为迭代停止条件;代码不要放在报告里面,可以作为附件提交!
1、定理、定义引入
Gram矩阵的定义:
若矩阵,则B为Gram矩阵。每个Gram矩阵都是半正定的,即
若要使Gram矩阵为正定的,则要满足:
即A是列向量无关的。正定矩阵都是非奇异的。
矩阵QR分解的定义(具体参考文章矩阵QR分解):
QR分解是将一个列向量无关的矩阵分解成具有标准正交列向量的矩阵Q和上三角矩阵R(对角线元素不为0)的矩阵分解方法,即A=QR:
为A的列且线性独立,
为Q的列且两两正交,所以有:
Q矩阵可逆且与Q互为逆矩阵,
定理1:设函数f(x)在处可微,则
是
的必要条件
证明:将函数f(x)在处一阶泰勒展开,有: