最优化方法实验三--矩阵QR分解

 实验目的与要求

1.熟练掌握QR分解Gram–Schmidt方法;

2.掌握Householder

3.能够判断矩阵是否可逆,并求出其逆矩阵

 问题

模型建立求解

1、Gram–Schmidt

1.1向量投影

向量的投影包含了两层意思:①正交关系:矢量与投影的差称为误差,误差和投影正交;②最短距离:投影空间中所有矢量中,与原矢量距离最近的,就是原矢量在该空间的投影,且最短距离的平方就是最小平方误差。

如图2所示,已知向量ab,将b投影到a上,投影为p,设p=ta,t为常量,bp的差为e,e=b-p。根据上述的正交关系ep正交,根据最短距离有:\hat{t}=\min_{t}\left \| b-p \right \|_{2}^{2}=\min_{t}\left \| b-ta \right \|_{2}^{2}

f(t)=\left \| b-ta \right \|_{2}^{2}=\left \langle b-ta,b-ta \right \rangle=t^{2}a^{T}a-2ta^{T}b-b^{T}b,则\triangledown f(t)=2ta^{T}a-2a^{T}b\triangledown f(t)=0,求得\hat{t}=\frac{a^{T}b}{a^{T}a}=\frac{a^{T}b}{\left \| a \right \|_{2}^{2}}。则p=ta=\frac{a^{T}b}{\left \| a \right \|_{2}^{2}}ae=b-p=b-\frac{a^{T}b}{\left \| a \right \|_{2}^{2}}a。当a为单位向量,即\left \| a \right \|_{2}^{2}=1时,有:

                        p=ta=(a^{T}b)a                    ------(1.1.1)

                        e-b-p=b-(a^{T}b)a        ------(1.1.2)

1.2 Gram–Schmidt正交化

Gram–Schmidt算法的目的是将给定的一组线性无关向量,转换为一组标准正交基。其主要思想为:每个新的矢量都减去它在已经正交化的矢量方向的投影,进而每次新增一个与所有已经正交化的矢量都正交的矢量。新的矢量只和之前的矢量有关,而与后面的矢量无关。每新增一个正交矢量,将其单位化,最终即可将一组线性无关向量转换成标准正交基。

如图3所示为将向量a_{1},a_{2}进行正交化过程。首先令\tilde{q_{1}}=a_{1},第一个矢量保持方向不变,将\tilde{q_{1}}单位化得到q_{1};然后根据2.1式(1.1.1)和(1.1.2),令\tilde{q_{2}}=a_{2}-(q_{1}^{T}a_{2})q_{1},可以保证\tilde{q_{2}}q_{1}正交,将\tilde{q_{2}}单位化得到q_{2}。于是将向量a_{1},a_{2}正交化得到了标准正交基q_{1},q_{2}

将向量的数目推广至n个,将a_{1},a_{2},...,a_{n}正交化的过程为:

①令q_{1}=\frac{a_{1}}{\left \| a_{1} \right \|_{2}}

②正交化:根据公式\tilde{q_{i}}=a_{i}-(q_{1}^{T}a_{i})q_{1}-...-(q_{i-1}^{T}a_{i})q_{i-1},i=2,3,...,n计算\tilde{q_{i}}

③检验线性相关:若\tilde{q_{1}}=0,则a_{i}=(q_{1}^{T}a_{i})q_{1}+...+(q_{i-1}^{T}a_{i})q_{i-1}a_{i}q_{1},...,q_{i-1}的线性组合,证明a_{i},q_{1},...,q_{i-1}线性相关,退出迭代;否则进行下一步;

④单位化:令q_{i}=\frac{\tilde{q_{i}}}{\left \| \tilde{q_{i}} \right \|_{2}}

⑤重复步骤②~④,直至遍历完所有向量。

若在第i次迭代未退出,可证明q_{i}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值