一、 实验目的与要求
1.熟练掌握QR分解Gram–Schmidt方法;
2.掌握Householder方法;
3.能够判断矩阵是否可逆,并求出其逆矩阵。
二、 问题
三、模型建立及求解
1、Gram–Schmidt
1.1向量投影
向量的投影包含了两层意思:①正交关系:矢量与投影的差称为误差,误差和投影正交;②最短距离:投影空间中所有矢量中,与原矢量距离最近的,就是原矢量在该空间的投影,且最短距离的平方就是最小平方误差。
如图2所示,已知向量a和b,将b投影到a上,投影为p,设p=ta,t为常量,b与p的差为e,e=b-p。根据上述的正交关系e与p正交,根据最短距离有:。
设,则
。令
,求得
。则
,
。当
为单位向量,即
时,有:
------(1.1.1)
------(1.1.2)
1.2 Gram–Schmidt正交化
Gram–Schmidt算法的目的是将给定的一组线性无关向量,转换为一组标准正交基。其主要思想为:每个新的矢量都减去它在已经正交化的矢量方向的投影,进而每次新增一个与所有已经正交化的矢量都正交的矢量。新的矢量只和之前的矢量有关,而与后面的矢量无关。每新增一个正交矢量,将其单位化,最终即可将一组线性无关向量转换成标准正交基。
如图3所示为将向量进行正交化过程。首先令
,第一个矢量保持方向不变,将
单位化得到
;然后根据2.1式(1.1.1)和(1.1.2),令
,可以保证
与
正交,将
单位化得到
。于是将向量
正交化得到了标准正交基
。
将向量的数目推广至n个,将正交化的过程为:
①令;
②正交化:根据公式计算
;
③检验线性相关:若,则
,
是
的线性组合,证明
线性相关,退出迭代;否则进行下一步;
④单位化:令;
⑤重复步骤②~④,直至遍历完所有向量。
若在第i次迭代未退出,可证明与