#导入葡萄酒数据集
from sklearn.datasets import load_wine
#导入交叉验证工具
from sklearn.model_selection import cross_val_score
#导入用于分类的支持向量机模型
from sklearn.svm import SVC
#载入葡萄酒数据集
wine = load_wine()
#设置SVC的核函数为linear
svc = SVC(kernel='linear')
#使用交叉验证法对SVC进行评分
scores = cross_val_score(svc,wine.data,wine.target)
# print(scores)
#先导入了scikit_learn的交叉验证评分类,然后使用SVC对酒的数据集进行分类,默认情况下,cross_val_score会使用3个折叠,因此,会得到3个分数
#使用.mean() 获得分数的平均值
# print(scores.mean())# 交叉验证法平均分约为0.928分
#将数据集拆成6个部分来评分——cross_val_score:
#设置cv参数为6
scores = cross_val_score(svc,wine.data,wine.target,cv=6)
# print(scores)
# print(scores.mean())
#在sklearn中,cross_val_score对于分类模型默认使用的是K折叠交叉验证,而对于分类模型则默认使用分层K交叉验证法
#打印红酒数据集的分类标签
# print(wine.target)
#随机拆分原理——先从数据集中随机抽一部分数据作为训练集,再从其余的部分随机抽一部分作为测试集,进行评分后再迭代,重复上一步操作,直到把我们希望的迭代次数全跑完:
#导入随机拆分工具
from sklearn.model_selection import ShuffleS
葡萄酒质量检测
于 2023-06-04 17:47:14 首次发布
本文探讨如何运用机器学习,特别是支持向量机技术,结合Python编程进行葡萄酒质量的预测和检测。通过数据预处理、特征选择和模型训练,实现了对葡萄酒品质的精准评估,为葡萄酒行业提供科学的质量控制手段。
摘要由CSDN通过智能技术生成