在大铁(铁路)场景中,行人异常检测是保障铁路安全运行的重要技术手段,以下是具体的方法和应用场景:
实现方法
-
深度学习模型检测:
-
模型选择:使用预训练的深度学习模型(如YOLOv5、YOLOv8或改进的YOLOv8模型)进行行人检测。
-
数据采集与预处理:在铁路沿线、车站等关键位置部署高清摄像头,采集视频流,并对图像进行预处理。
-
实时检测与分析:对每一帧视频进行实时检测,识别行人是否进入危险区域。改进的YOLOv8模型加入了可变形卷积模块、注意力机制和BiFPN网络结构,能够更精确地检测地铁场景下行人的异常行为。
-
异常行为识别:通过分析行人的运动轨迹、停留时间等特征,判断是否存在异常行为。
-
-
目标跟踪与行为分析:
-
目标跟踪:使用目标跟踪算法(如DeepSORT)对检测到的行人进行跟踪,记录其运动轨迹。
-
行为分析:通过分析行人的运动轨迹和停留时间,判断是否滞留或存在其他异常行为。
-
-
多模态数据融合:
-
数据融合:结合视频图像、红外热成像等多模态数据,提高检测的准确性和可靠性。
-
实时监控与预警:系统实时分析采集到的数据,当检测到异常情况时,立即发出警报。
-
-
智能分析系统:
-
视频分析:利用AI智能分析网关对监控视频进行实时分析,支持多种智能分析功能,如人员跌倒检测、区域人员入侵等。
-
预警与响应:系统能够在毫秒级时间内识别安全隐患,并立即触发告警,通知相关人员进行处理。
-
应用场景
-
铁路沿线安全监控:
-
行人入侵检测:实时监测铁路沿线是否有行人误入轨道区域,一旦发现行人进入危险区域,立即发出警报。
-
高空落物检测:检测铁路沿线是否有物体从高处落下,通过分析物体的运动轨迹判断是否为落物。
-
-
铁路车站安全监控:
-
滞留检测:在车站内检测乘客是否在特定区域滞留过长时间,通过跟踪乘客的位置和停留时间,判断是否滞留。
-
异常行为识别:识别乘客的异常行为,如摔倒、徘徊等,及时发现潜在的安全隐患。
-
-
铁路施工区域安全监控:
-
人员安全监控:在施工区域检测是否有无关人员进入,确保施工安全。
-
工服工帽检测:检测作业人员是否穿戴工服工帽,对违规作业的人员进行抓拍,并将告警消息上报到平台。
-
-
铁路巡检:
-
巡检机器人与无人机应用:配备摄像头的巡检机器人和无人机可以自动巡检铁路沿线,减少人工检查的需求。
-
故障检测:通过分析巡检画面,检测设备故障,一旦发现异常,系统立即报警。
-
通过这些实现方法和应用场景,行人异常检测技术在铁路领域得到了广泛应用,有效提高了铁路系统的安全性和运维效率。