铁路行人检测的应用场景
-
铁路沿线安全监控:在铁路沿线部署行人检测系统,可以实时监测是否有行人误入轨道区域,尤其是在无人看守的铁路道口、铁路桥梁、隧道等危险地段,及时发现并预警,避免行人与列车发生碰撞事故。
-
铁路车站区域管理:在铁路车站的站台、候车室、进出站通道等区域,通过行人检测技术可以实现对人员的实时监控,防止乘客在站台边缘滞留或发生危险行为,保障乘客安全。
-
铁路施工区域安全保障:在铁路施工区域,检测是否有无关人员进入施工区域,确保施工安全,避免施工设备与人员发生碰撞。
-
铁路巡检辅助:协助铁路巡检人员进行日常巡检,通过自动检测行人或其他异常情况,提高巡检效率和安全性。
铁路行人检测的实现原理
-
基于深度学习的目标检测方法:
-
模型选择:通常采用预训练的深度学习模型,如YOLOv5、YOLOv8等。这些模型能够对输入的图像或视频帧进行快速分析,识别出其中的行人目标。
-
数据采集与预处理:使用高清摄像头采集铁路沿线或车站区域的视频流。采集到的图像或视频帧需要进行预处理,如去噪、增强等,以提高检测的准确性。
-
实时检测与分析:对每一帧视频进行实时检测,识别出行人目标的位置和特征。通过设置特定的危险区域,当检测到行人进入危险区域时,触发警报。
-
-
改进的视觉背景提取算法:
-
背景建模与更新:采用改进的视觉背景提取算法(如VIBE)对背景进行建模和实时更新。该算法能够有效区分背景和前景目标,定位入侵物体区域。
-
运动目标检测:结合帧差法等技术,快速消除运动目标的叠影,提高检测的实时性和准确性。
-
-
热成像技术结合深度学习:
-
热成像摄像头部署:在列车上或铁路沿线安装热成像摄像头,利用热成像技术能够在夜间和低可见度环境下清晰地捕捉到行人或其他障碍物的热信号。
-
深度学习模型识别:将热成像图像输入到深度学习模型(如Faster R-CNN)中进行目标识别和分类。该模型能够准确地识别出轨道上的行人、动物等潜在障碍物,及时发出预警信号。
-