1、安装Anaconda
1.1 下载安装Anaconda
(1)进入网址:https://mirrors.bfsu.edu.cn/anaconda/archive/;ctrl+F搜索2022.10,选择下载windows版本。
下载完成后打开下载完成的exe文件,进入以下界面,以下为每一步的安装步骤记录:
安装过程需要一定时间,等待安装完成
点击finish后浏览器会出现两个网址,不用管,直接关闭即可
1.2 配置环境变量
在电脑桌面,鼠标右键进入显示设置,然后在查找设置中输入环境变量,
选择编辑系统环境变量进入如下界面,点击环境变量
注意:通过右侧的“新建”按钮,可新建环境变量的路径,将【E:\Anaconda】、【E:\Anaconda\Scripts】 与【E:\Anaconda\Library\bin添加到环境变量。环境变量的路径需要与之前安装路径保持一致,如安装在D盘,则应为【D:\Anaconda】、 【D:\Anaconda\Scripts】与【D:\Anaconda\Library\bin】。
添加完成后确定即可。
1.3 桌面快捷方式
找到 Jupyter 的安装路径,win11如下:
菜单搜索jupyter,鼠标右键搜索结果选择打开文件位置,把 Jupyter 和 Prompt 快捷方式复制到桌面即可。
2、安装CUDA
2.1 查看显卡:
判断你当前电脑的显卡是NVIDIA还是AMD,Pytorch需要基于NVIDIA的显卡上运行,AMD卡上无法运行。
2.2 判断电脑需要安装的CUDA版本
win+R输入cmd;在CMD中进行查看
nvidia-smi
如图所示,电脑的CUDA版本为12.0,CUDA支持向下兼容,因此可以安装12.0以下的版本。本文将选择以11.3.0版本进行安装。
注意:一般不建议选择最新版本进行安装。
2.3 安装CUDA
CUDA 的下载链接:https://developer.nvidia.com/cuda-toolkit-archive
本文将选择以11.3.0版本进行安装。,进入网站ctrl+F搜索11.3.0,结果如下:
点击选择11.3.0版本,进入如下界面:依次选择下载
下载完成后,将 exe 文件放置在新建的 E:\CUDA 内,点击 exe 文件,会弹出如图所示提示框,这里要选择临时的解压文件夹,新建文件夹放在E:\CUDA\Tem 内,安装结束后, 该临时解压文件夹会自动删除。
如果你是第一次安装,尽量全部选择;如果是以前卸载过重装,那就只勾选第一个CUDA进行安装,如下:
点开CUDA旁边的加号,取消勾选Visual Studio Integration,即可进入下一步
使用默认路径进行安装,直接点击下一步
安装结束后,可以查看之前创建的 E:\CUDA\Tem已被删除,可以删除E:\CUDA文件夹。
2.4 配置环境变量
(1)在电脑桌面,鼠标右键进入显示设置,然后在查找设置中输入环境变量,进入编辑系统环境变量,点击环境变量(具体请看1.2中有详细讲解)
可以看到,系统已经自动生成环境变量路径。如果没有则需要自己手动添加,添加时注意路径需要输入正确
添加时的变量名如下:
CUDA_PATH
CUDA_PATH_V11_3
NVCUDASAMPLES_ROOT
NVCUDASAMPLES11_0_ROOT
(2)查看CUDA是否安装成功
运行cmd,输入nvcc --V即可查看版本号;
set cuda,可以查看 CUDA 设置的环境变量。
3、虚拟环境的创建、查看、激活
3.1 创建虚拟环境
虚拟环境名为pytorch(可以替换为自己想要的虚拟环境名)
conda create -n pytorch python=3.9
创建虚拟环境过程中出现这个,输入y,等待创建完成
创建完成如下:
3.2 查看创建的虚拟环境
conda info --envs
可见,虚拟环境已经创建成功
3.3 激活虚拟环境
conda activate pytorch
出现红色方框圈出的虚拟环境名,表示激活成功
4、安装pytorch
4.1 介绍
PyTorch 包括torch、torchvision 与 torchaudio。这三个库中,torch 有 2G 左右,而 torchvision 和 torchaudio 只有 2M 左右。以下为torch与cuda、python版本的对应关系。
本文中使用CUDA版本为11.3.0,即对应cu113,python版本为3.9即对应cp39。根据对应关系选择安装torch1.12.0版本,cu113,cp39
进入 PyTorch 官网:https://pytorch.org/get-started/previous-versions/,在其中 Ctrl + F 搜索
pip install torch==1.12.0
注意,这里使用 pip 安 装,而不是 conda 安装(如果用 conda 安装,最后检验 cuda 时是不可用的)
选择cu113进行安装,以下有两种安装方法:
4.2 方法一:直接安装(不推荐,安装慢)
复制网页中的那段代码,即
pip install torch==1.12.0+cu113 torchvision==0.13.0+cu113 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu113
进入上一步激活的pytorch虚拟环境下运行,不要在base环境下运行。
最后几行代码里有 Successfully installed 即安装成功。但是此方法下载较慢。
4.3 方法二:先下载好文件后再安装
首先,进入https://download.pytorch.org/whl/cu113网站,如下图所示:分别进入torch、torchvision、torchaudio 三大组件各自的网站进行下载
根据上面介绍的torch的对应关系选择对应版本进行下载,第一库是 torch==1.12.0+cu113,第 二个库是 torchvision==0.13.0+cu113,第三个库是 torchaudio==0.12.0
首先,进入torch,CTRL+F搜索1.12.0+cu113,选择cp39,win的版本
同理,进入torchvision,搜索0.13.0+cu113,进入torchaudio,搜索0.12.0+cu113,下载cp39,win版本
下载完成后将三个文件放入新创建的E:\whl文件夹中
激活虚拟环境pytorch,并使用pip install进行安装
pip install E:\whl\torch-1.12.0+cu113-cp39-cp39-win_amd64.whl
pip install E:\whl\torchvision-0.13.0+cu113-cp39-cp39-win_amd64.whl
pip install E:\whl\torchaudio-0.12.0+cu113-cp39-cp39-win_amd64.whl
最后一行代码前面出现Successfully installed表示安装成功,安装完成后可以删除E:\whl文件夹
输入如下命令查看安装情况:
pip list
继续输入如下命令,验证是否安装成功,出现True表示安装成功
import torch
print(torch.__version__)
print(torch.cuda.is_available())
4.4 方法三:在虚拟环境下输入命令安装(强烈推荐)
进入网址:Previous PyTorch Versions | PyTorch
选择自己需要的CUDA 和torch版本进行安装:
进入虚拟环境然后输入语句即可,例如安装 CUDA 11.8
torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2
那么就选择图中灰色语句
即:
pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu118
5、安装PyCharm
5.1 安装PyCharm
首先下载 PyCharm,地址为https://www.jetbrains.com/pycharm/download/other.html ,下载社区版版本
安装时,放在 E盘的新建文件夹:E:\PyCharm 里
点击Finish ,安装完成
注:本文为作者自己安装配置相关环境的记录,并非原创。主要参考了B站这一视频Python深度学习:安装Anaconda、PyTorch(GPU版)库与PyCharm