论文阅读(三)

该文探讨了将布谷鸟搜索算法与强化学习(RLCS)相结合,用于应急无人机的路径规划。布谷鸟搜索是一种模拟生物行为的优化算法,其核心包括随机选择、优胜劣汰和固定巢穴数量等原则。通过引入强化学习,算法能进一步优化决策过程,提高无人机在紧急情况下的路径规划效率和适应性。
摘要由CSDN通过智能技术生成

题目:基于强化学习布谷鸟搜索算法的应急无人机路径规划_罗文冠/南京信息工程大学

布谷鸟搜索算法

        模拟布谷鸟寄生行为实现算法的优化过程。

        三条理想化准则:1)布谷鸟随机选择被寄生的巢穴,并产下一个卵,每个巢穴中的卵对应一个解 2)每一代中优质的卵会被保留至下一代。 3)可选巢穴的数量是固定的,外来的卵会以一定概率被发现,此时寄主会选择丢掉这个卵或者重新建造鸟巢。        

        

 

布谷鸟搜索算法与强化学习结合RLCS

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值