概述
此论文标题是《StegGAN: hiding image within image using conditional generative adversarial networks》,意为StegGAN:使用条件生成对抗网络实现图像中隐藏图像。该论文提出了StegGAN,用于完成图像隐写任务。
论文摘要
隐写术是一种将秘密信息隐藏在另一幅看似无害的图像(或任何数字媒体)中的艺术。统计上的不可感知性是传统隐写术的主要关注点之一。近年来,基于深度学习的方案在图像中隐藏图像方面表现出了显著的成功。然而,大多数此类方法在嵌入和提取图像时都会出现视觉伪影问题。本文提出了一种基于条件生成对抗网络的架构,用于实现图像中隐藏图像的方法。通过引入感知损失函数和对抗训练,该方法确保了隐写图像的视觉质量、统计上的不可检测性以及无噪声的提取。所提出的框架在多个数据集上进行了测试,结果显示相比现有方法有显著改进(约1 dB)。本文末尾还提供了消融研究,展示了所提架构中各模块的贡献。代码已开放,地址为:https://github.com/brijeshiitg/StegGAN。
创新点
-
本文提出了一个名为“Embedder-Extractor”(嵌入器-提取器)的two-players framework,其概念上类似于GAN,并且两者的底层架构都基于条件生成对抗网络(cGAN)框架。
-
在两个网络中引入的对抗训练有助于: (1) 生成具有视觉不可感知性和统计不可检测性的隐写图像