概述
此论文标题是《HiNet: Deep Image Hiding by Invertible Network》,意为基于可逆网络的深度图像隐藏。
论文摘要
图像隐藏旨在以不可察觉的方式将秘密图像嵌入到一张载体图像中,并在接收端完美恢复秘密图像。容量、不可见性和安全性是图像隐藏任务中的三大主要挑战。本文提出了一种基于可逆神经网络(INN)的新框架——HiNet,用以同时解决图像隐藏中的这三大挑战。为了解决容量问题,我们提出了一种逆向学习机制,同时学习图像的隐藏与揭示过程。我们的方法能够将一张完整大小的秘密图像隐藏到与其尺寸相同的载体图像中。在提高不可见性方面,我们摒弃了像素域的隐藏方式,提出将秘密信息隐藏在小波域中。此外,我们提出了一种新的低频小波损失,用于约束秘密信息被隐藏在高频小波子带中,从而显著提升了隐藏的安全性。
实验结果表明,HiNet在ImageNet、COCO和DIV2K数据集上的秘密图像恢复方面,显著优于其他最新的图像隐藏方法,在PSNR(峰值信噪比)上提升了超过10 dB。。代码已开放,地址为:https://github.com/TomTomTommi/HiNet。
创新点
-
我们提出了一种新颖的图像隐藏网络,即 HiNet,基于可逆神经网络,用于大容量图像隐藏任务。
-
我们设计了两个具有可微性和可逆性的隐藏和揭示模块,旨在使图像隐藏过程完全可逆。
-
我们提出了一种低频小波损失,用于控